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Foreword

Thereengineering of legacy systemsiswidely recognized asoneof themost
significant challengesto befaced by thesoftwareengineeringcommunity.

A legacy systemisatechnically obsol escent component of theinfrastructure
of acontent management environment (Omnibus Lexicon Definition, http://
www.fourthwavegroup.com/Publicx/1301w.htm). Legacy systems embody
substantial corporateknowledgeincluding requirements, designdecisionsand
businessrules. Databases, application programsand all of the other forms of
hardwareand softwaretypically owned by companies, including mainframes,
personal computers, terminal s, networksand operating systems, congtitutethem.

Althoughthefunctiondity deliveredby alegacy systemmay beavailablefrom
moremoderntechnol ogy, amigrationtonewer systemsmay bedeterred by the
possihility of servicedisruptionduring upgrading, or by thepercelveddifficulty in
convertinglegacy content to new model sandformats.

Theneedfor reengineeringlegacy systemsisthusimplicitly containedinthe
definitiongivenabove, andismotivated by thedesiretoutilizemorecost effective
hardwareor softwareplatforms, toreducethecostsof maintenance(astheY 2K
problem hastaught) or to add significant new functionalities. Theproblemis
widespread sinceit effectsall kindsof organizations; failingtofaceit may hamper
anorganization’ sattemptstoremaincompetitiveif not threatenitsvery existence
onthemarket. Finally, itisaproblemthat may persist over time, asthereseemsto
benogoodreasonfor being confident that systemscurrently under devel opment
will not betomorrow’ slegacy systems.

Among the possible aspects that need to be taken into account while
reengineeringalegacy system, thesoftwareperspectiverepresentsthefocal issue
(andinfact reengineeringisoftentreated asasynonymof softwarereengineering).

Aswithmany new andevolvingfie dsof research, thescientificcommunity has
yettoagreeonacommontaxonomy of termswithrespecttosoftwarereengineering.
Infact, althoughin 1992 the Joint L ogi stic Commanders Computer Resources
Managementgroup (JL C/CRM) authorized and sponsoredaDoD policy workshop
amedtoformally defineasoftwarereengineeringterminology. Asof today, there
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Isnotevenanagreement uponthespe lingof reengineering (themost commonbeing
“re-engineering” and* reengineering”). Therefore, itisimportant toprovidesome
basi c definitionsof thedomain, inorder to gainacommon understanding of the
termsandthekeywordsthat will beused throughout thisvolume.

SoftwareReengineeringmay bedefinedas” theexaminationandtheateration
of anexisting subject systemtoreconstituteitinanew form.” Ontheother hand,
itmay also bedefined as” theprocessof modifyingtheinternal mechanismsof a
systemor programor thedatastructuresof asystemor programwithout changing
itsfunctionaities.” Whichever definitionisadopted, theprimary goal of software
reengineeringistoattain new level sof efficiency of theexisting assets, without
recurringtothedevel opment of new systems. Therefore, animportant aspect that
needsto befurther exploredistodefinetheextent towhichreengineeringishel pful
andtoidentify somemetrics, if any, that can beusedto decidewhether theoption
of rebuildingfromscratch shouldbefollowed.

Regardless, al of theresearchersinthefield seemtoagreeonthefact that the
processof softwarereengineering encompassesacombination of sub-processes
suchascode-reengineering, restructuring, redocumentation, retargeting, reverse
and forward engineering. Some of these sub-processesareaimed at program
understanding, asforindancerestructuring, redocumentationandreverseengineering.
Theothersare geared towardsevol ution, asfor instance, code reengineering,
retargeting, forwardengineering.

Thussoftwarereengineeringmay imply, amongmany other tasks, restructuring
“spaghetti-like’ code(code-reengineering); transformingthesystemrepresentation
fromoneformtoanother at thesamerelativelevel of abstraction, whilepreserving
theexternal functional behavior (restructuring); producing support documentation
andreformattingthesystems’ sourcecodelistings(redocumentation); transporting
and hosting or porting theexisting systemtoanew configuration (retargeting);
understanding, analyzing and abstracting the systemto anew format ahigher
abstractionlevel (reverseengineering), generating new sourcecodefromdesign
informationcapturedviapreviousreverseengineeringactivities(forwardengineering).

These are just some of the topics that will be covered by the research
contributionscontai nedinthisvolume: auseful starting point for anyoneinterested
Ingetting adeeper insght on softwarereengineering tool sandtechniques.

| would liketo dedicatethisbook tomy parents.

Sd Vaent
Universitadi Ancona, Italy,
September 18, 2001



Preface

SoftwareEngineering, softwaredeve opment and softwarereusearei mportant
Issuestoadll organizations. Gettingthemost out of softwarepackagesby ensuring
effective devel opment, testing and use can save money and improve business
practices. Astheimplicationsbecomemorewidespread, researchers, practitioners,
academiciansandinformationsystemsmanagersalikeneedtohaveaccesstothe
most up-to-dateresearch and practi cein softwareengineering and devel opment.
Thechaptersinthisbook addressthetimely topi csof auditing softwareengineering
processes, enterpriseresource planning and softwarereuseand other relevant
applicationsandtechnol ogies. From academicsreporting research findingsto
devel opersreporting on best practices, the authors of these chaptersarefrom
diversecultural andindustry backgroundsand provideinsightsfromtheir varied
experiences.

Chapter 1 entitled, “ Computer Aided Method Engineering” by Ajantha
Dahanayakeof Delft University of Technology (TheNetherlands) discussesa
conceptua model tospecify thefunctionaity of asupportenvironment. Thechapter
first presentsareview of basi c conceptsand approachesfor deriving model sfor
computer aided Software Engineering (CA SE) environments. Thechapter then
offersaninformal description of service component conceptsusedtoderivea
generic framework. Finaly, the chapter outlines a configuration of service
componentsto support computer aided method engineering (CAME).

Chapter 2entitled, “ Architectureand |mplementation | ssues’ by Ajantha
Dahanayakeof Delft University of Technol ogy (TheNetherlands) concentrateson
usingarepresentationformalismtocongruct aproblemspecificCAM Eenvironment.
Suchanautomated support environment must beprovided for theinformation
systemsdesignstateinparticular for therequired UpperCA SE tool saccordingto
themethodschosenfor theproblem specificenvironment.

Chapter 3entitled, “ Future Directionsin CASE Repositories’ by Ajantha
Dahanayakeof Delft University of Technology (TheNetherlands) reportsonhow
CAMEenvironmentsprovideafully flexibleenvironment for method specification
andintegrationand canbeusedfor informationsystemsdesignactivities. The
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chapter then di scusseshow thistheory canleadtothedesign of thearchitectureof
suchanenvironment.

Chapter 4 entitled, “ Audit of aCA SE Environment” by Mario Piattini of the
Universidad de Castilla-LaManchaand Jestis Garcia Tomas of Universidad
PolitecnicadeM adrid (Spain) addressesthequestionsthat must beansweredwhen
auditingaCA SE environment. Thechapter reflectsuponthemesthat havebeen
dedtwithintheliteraturefromtheperspectiveof aninformationsystemsaudit. The
authorsintroducethebas cconceptsof aninformationsystemsauditandanalyze
therisksthat needto beaddressed wheninstallingaCA SEtool.

Chapter Sentitled, “ ProcessM odd for Round-tripEngineeringwith Relational
Database’ by Leszek A. Maciaszek of MacquarieUniversity (Australia) identifies
difficult round-trip scenariosand definesthe processesneeded to handlethose
scenarios. Theprocessesconformtothecurrent state-of-thepracticeinforward
andrevereengineering. Thechapter thendiscussesthelimitationsof atool-driven
round-tripengineering.

Chapter 6entitled, “ Achieving EffectiveSoftwareReusefor BusinessSysems’
by Daniel Brandon, Jr. of ChristianBrothersUniversity (USA) reportsonsoftware
reuseincludingdiscussionsof bothliteratureresearchanddes gn/coding research.
Thechapter further presentsan approachfor softwarereuseinthedevel opment of
business systems. The approach discussed in the chapter is based on object-
oriented technol ogy and providesfor both the specification and enforcement of
softwarereuseand corporatestandards.

Chapter 7 entitled, “ TheFutureof SoftwareDevelopment” by Karen Church
and Geoff te Braakeof Port Elizabeth Technikon (South Africa) discussesthe
resultsof twosurveysasthey illustratethetrendsin softwaredevel opment. The
authorslook at thehistory of softwaredevel opment anditsevol ution. Theauthors
discussthe evolution of programming languages, coding styles and software
architecture. It further looksat thegrowingimportance of user interfacesand
describesfuturetrends.

Chapter 8entitled, “ UnderstandingtheRoleof UseCaseinUML.: A Review
andResearchAgenda’ by BrianDobingof theUniversity of L ethbridgeand Jeffrey
Parsonsof Memorial University of New Foundland (Canada) focuseson two
components of UML: use cases and class models. The authors consider the
appropriateness of use cases as acomponent of an object-oriented modeling
languageby examiningthe r roleasatool for communicatingwithusers. Theauthors
further consider therel ationshi p between usecasesandtheclassmodel sthat are
developedfromthem. Findly,theauthorsoffer aframework for empirical research
toevauatethevalueof usecasesandtheir relationshiptoclassmodelsinUML.

Chapter 9 entitled, “ Enhancing a Rigorous Reuse Process with Natural
L anguageRequirement Specifications’ by L. Felice, C. Leonardi, L. FavreandV.
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Mauco of the Universidad Naciona del Centro dela Pcia. de Buenos Aires
(Argentina) proposesasystemati creuseapproachthat integratesnatura language
requirement specificationswithformal specificationsin RA I SE Specification
Language. It addressesthe problems associated with reusability techniques,
discussesthereusability processand providesaconcreteexampl eof theprinciples
discussed.

Chapter 10 entitled, “Extended Spatiotemporal UML: Motivations,
Requirements,andCongtructs’ by RosannePriceof MonashUniversity (Audtrdia),
NectariaTryfonaand Christian Jensenof AaborgUniversity (Denmark) presents
aconceptua modelinglanguagefor spatiotemporal gpplicationsthat offersbuilt-in
supportfor capturing spatialy referenced, time-varyinginformation. Specifically,
thewell-known obj ect-oriented unified modelinglanguagei sextended to capture
thesemanti csof spatiotemporal data. Thechapter givesexamplestoillustratethe
simplicity andflexibility of thisapproach.

Chapter 11 entitled, “ A Design Method for Real-Time Object-Oriented
SystemsUsng CommunicatingRed TimeStateM achinesby EduardoB. Fernandez,
JeWuandDeberaR. Hancock of FloridaAtlanticUniversity (USA) proposesan
object-oriented analysisand design methodol ogy that augmentsthetraditional
Unified M odeling L anguagedynamicmodel withreal -timeextensionsbased on
high-level parallel machinesand communi cation notationsfrom Communicating
Redl-TimeStateM achines. Thechapter a soprovidesanexampl eof theproposed
methodol ogy asit appliestoan automated passenger trainsystem.

Chapter 12 entitled, “ Javal ntegrated Devel opment Environments' Support
for Reuse-Oriented Software Devel opment” by Jenni Ristonmaa, JarmoAhonen
andMarkoForsdll of theUniversity of Jyvaskyl&(Finland) reportsontheauthors
study of three Javal DEsandhow they support reuse-oriented softwaredevel opment.
The authors derived the evaluation criteriafrom aknown reuse model. They
conclude that current Java IDEs need to improve their support for the reuse
process.

Chapter 13 entitled, “Information M odeling and M ethod Engineering: A
Psychological Perspective” by Keng Siauof theUniversity of Nebraska-Lincoln
(USA) proposesthe use of cognitive psychology asareferencedisciplinefor
information modeling and method engineering. Thechapter reviewstheoriesin
cognitive psychology and appliesthem to information modeling and method
enginesring.

Chapter 14 entitled, “ L oad- Testing of Web Site A pplications: Analysisand
Recommendations’ by Vijay Raghavanof NorthernKentucky University (USA)
discussestheneed and benefitsof |oad testing. Theauthor providescriteriafor
developingametricsprogramfor loadtestingWeb sitegpplications. Finaly, the
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chapter concludesthatitiscritical for organizationsdepl oyingWebsitestodevel op
aload-testing planthat includesall aspectsof sitedevel opment.

Chapter 15entitled, “ Component-Based ERPDesigninaDistributed Object
Environment” by Bonn-OhKimof SeattleUniversity and Ted Leeof Memphis
StateUniversity (USA) outlinesstrategi c stepsneeded towi el dadominant power
inthefutureEnterpriseResourcePlanning (ERP) market. Thestepsdiscussedare:
knowledgemodeling, componentizationof domainknowledge, implementationof
componentizeddomainknowledge, and marketingstrategiesfor domainknowledge
components.

Chapter 16 entitled, “Knowledge and Object-Oriented Approach for
| nteroperability of Heterogeneous| nformation M anagement Systems’ by Chin-
Wan Chungand Chang-Ryong Kimof theK oreaAdvanced I nstituteof Science
and Technology (Korea) and Son Dao of HughesResearch L aboratory (USA)
Incorporatesconceptsand constructsassoci ated with theknowledgeand obj ect-
oriented paradigmswith abstract views, procedures, encapsul ation, inheritance
and classcomposition hierarchiestoresolveproblems

Chapter 17 entitled, “ A RecursiveA pproachto SoftwareDevelopment” by
Shirley Becker of the FloridaInstitute of Technology and Alan Jorgensen of
Advanced Engineering Technology (USA) proposesthat arecursivesoftware
devel opment processbeused asameansof managingthecomplexity of today’ s
software systems. The authors advocate that the recursive approach hasthe
flexibility neededto perform devel opment activitiesinany order toensurethat
systemsrequirementsaremet.

Chapter 18 entitled, “ Adding Alternative Access Pathsto Abstract Data
Types’ by Xavier Franch and Jordi Marco of the Universitat Politecnicade
Catalunya(Spain) presentsaproposal for devel oping efficient programsinthe
abstract datatype programming framework, keeping themodul ar structure of
programsandwithout viol ating theinformationhiding principle. Theproposal
focuses in the concept of shortcut as an efficient way of accessing data, an
dternativetousingprimitiveoperationsof ADT.

Chapter 19entitled, “ Relational DataM odelingfor GeographicInformation
Systems’ by LawrenceWest, Jr. of theUniversity of Central Floridaand Brian
Menneckeof East CarolinaUniversity (USA) addressesdatamodeling problems
inherent in the use of geographicinformation systemsthat are not adequately
covered by traditional modeling techniques. Thischapter proposesrelational
moddlingtechni questhat document organi zationd datai ntegrity ruleswhensystems
thatincludespatial dataaredevel opedfor morewidespread use.

Chapter 20entitled, “ SoftwareProcessM odel sare Software Too: A Domain
ClassModel for Software ProcessModels’ by Daniel Turk of Colorado State
University andVijay Vaishnavi of GeorgiaStateUniversity (USA) focusesonthe
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domainclassmodel asanexampleof onetypeof model that couldbeproducedif
an approach such as the Unified Process were used in the process modeling
domain. Whileidentifyingtheconceptua needsof processmoddingsystems, these
model sleaveopenthechoi ceof howtoformalizeandimplement actual solutions.
Theauthorsdevel opadomainclassmodel for processmodel sasanexample.

Chapter 21 entitled, “A Process Model for Certification of Product and
Process’ by Hareton L eungandVincent Li of Hong K ong PolytechnicUniversity
(Hong Kong) identifiestwo processmodels, onefor process certification and
another for product certification. Theauthorsthen proposeacertification process
for Commercia Off the Shelf (COTS) product and its development process.
Finally, theauthors devel op amodel of certification processfor both product
certificationanddevel opment processcertification.

Asbusi nessesseek toimprovetheir useof software, thechaptersinthisbook
will provideins ghtful theoretical discussionaswell aspractical examplesandcase
studiesillustrating theconceptsdi scussed. Researchers, academician, students, or
softwareengineerswill findtheinformati oncontained hereininval uableasastarting
point or asupplement totheir research and practice. Fromhow toimprovereuse
techniquestohow tomoreefficiently devel opand usemodel s, thisbook contains
practical andtheoretical informationwhichisessential tothoseseekingtofully
understandtheemergingfield of softwareengineering.

IRM Press
January 2002
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Chapter 1

Computer Aided Method
Engineering

Ajantha Dahanayake
Delft University of Technology, The Netherlands

The relationship between information systems development methods,
organizational information systems engineering requirements, and the
advantage of flexible automated support environments is presented. CASE
technology is presented as a possi ble solution to provide flexible automated
support. In this chapter the major topic isa conceptual model to specify the
functionality of a support environment. First a review of a number of basic
concepts and approaches for deriving models for CASE environments are
given. Aninformal description of service component concepts used to derive
a generic framework is presented. Further, a configuration of service
components, to support Computer Aided Method Engineering (CAME), is
outlined.

MODELS OF SUPPORT ENVIRONMENTS

There are a number of approaches attempting to develop a better
understanding of CA SE technology to support information modeling. Some
of these will be discussed below to formulate the rationale behind the
approach adopted in this book.

Models Based on I ntegration | ssues
Integration issues are discussed in Wasserman (1990), Brown et al.,
(1992), and Wallnau et a. (1991), from the viewpoint that integration can be
thought of as aset of characteristics of a CASE environment. These charac-

Previously published in Computer-Aided Method Engineering: Designing CASE Repositories for the
21% Century, edited by Ajantha Dahanayake. Copyright © 2001, Idea Group Publishing.



2 Computer Aided Method Engineering

teristicsare seen asindependent dimensions, namely dataintegration, control
Integration, and presentation integration, along with whichintegrationissues
can be examined.

Subsequently, the data, control, and presentation dimensions have been
expanded by adding platform and process integration dimensions (Zarrella,
1990). Platform integration refers to the technical capability of tools that
execute on different hardware and system software platformsto interoperate
effectively. Processintegrationreferstotheability of aCA SEtool torepresent
and support the devel opment process. Thisdimensional view of tool integra-
tion is further enhanced by distinguishing between integration of toolswith
aplatform and integration of toolswith aprocess. Tool-processintegrationis
subdivided into life-cycle processes and development processes. Platform
and processintegrationisseen asorthogonal todata, control, and presentation
integration (Thomaset al., 1992). Thismultidimensional view of integration
Issomewhat problematic. Itisnot clear what ismeant by: “thedimensionsare
orthogonal” and whether they can, or should be considered separately.

An approach discussed in Thomaset. al. (1992) treats integration not as
aproperty of acomponent, but rather asa property of arelationship between
components. Goalsare defined for the properties of each relationship such as
the relationship between a tool and a framework a tool and a development
process, and among tools. A framework is the platform where the tools
operateaccordingtothisinterpretation; thisframeworkissimilar totheNIST/
ECMA reference framework (Brown et a., 1992).

Although this view is useful to highlight integration issues as being
distinct environment characteristicsin their own right, it hasitsown limita-
tions. Theintegration relationshipsare expressed asgoal's, which an environ-
ment may achieve. Unfortunately, thereisno discussion about how to achieve
these goals, what dependencies there are between them, and what trade-offs
have to be made. This approach is helpful to consider the potential relation-
ships between every pair of tools in the environment; but there is little
direction to addressing the environment as awhole.

Repository Based Models

A view focused on a central repository as a key mechanism for data
integration in CASE environment is preferred by many. Thishasformed the
basisof several effortsto devel op environments. Thereareanumber of CASE
environments offering repository-based models, for example, PCTE (Por-
table Common Tool Environment) and its object management service (Euro-
pean Computer Manufactures Association, 1990). Some other examples are
proprietary tools, such as|EW and |EF (Staring, 1989), object management
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Figure 1. Four conceptual levels of a CASE repository that are important
for providing a flexible andextendable mechanism for integration
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workbench, software through pictures (Wasserman, 1990), research based
Daida(Jarkeetad., 1992), and Ithaca(Mey et al., 1993). Thereisabelief that
arepository of some sort at the heart of a CA SE environment should be the
primary means of tool integration (Welke, 1988).

A data storage mechanism, an interface to persistent data, a set of
schemata, an information model, and a concept of operations to manipulate
the datacharacterize arepository. The description of the stored data, called a
schema, isthe main concept that makesit different from adatabase. A schema
typically recordsinformationabout thedifferent typesof dataintherepository
and how these data are interrelated. The schema itself will be stored some-
where, often together with the instance data and will require an interface to
accessit, often the sameinterface as the instance data. The schemainforma-
tionmay bespecifictoaparticul ar application domainor may bemoregeneral
to a wide set of domains. As a description of all the data stored in the
repository, theschemahasanimportant roletoplay. Ineffect, arepresentation
of the schema acts as the definition of the data stored in the repository,
explaining the design of the data structures. The schema can be used as the
basisfor determining access. The ability of the schemaas arepresentation of
areal-world application domain is critical to the success of the repository.
Figure 1 gives the definitions following this explanation of Welke (1989).
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Current MetaCA SE tools based on repository models enable modifica-
tion of diagram elements and associated storage and manipulation function-
ality. Modification of advanced aspects such as consistency verification,
diagram technique definition according to the requirements of an arbitrary
technique, and generation or model execution is still non-existent. Practice
has been based on providing method component libraries, method reuse, and
runtime adaptability. The existence of a schema, or ameta model within an
environment, isitself not adequate, eventhough metamodel integration leads
toincreased flexibility (Verhoef, 1993; Dahanayake, 1997). There are many
Issues that need to be resolved. These issues fall into two main categories.
syntax issues, e.g. naming, notation, convention; and semantic issues, e.g.
what is stored, whereisit stored, and what does it mean?

There have been anumber of attempts at schemalevel to define generic
models that can be used as the basis for semantic agreements between tools
across an application domain. A great deal of research istaking placein this
area, with “enterprise modeling and integration” being the phrase that unites
much of this work. To date, none of these generic schemata have achieved
wide success, although the IBM AD/Cycle Information Model (IBM, 1989)
and 1SO Information Resource Dictionary Systems (IRDS) (ISD/IEC, 1990)
represent extensive effortsin this area.

Frameworks

A generic framework for CASE environmentswith all types of integra-
tion are presented in Brown et a. (1994), combined with the NIST/ECMA
Frameworks Reference Model (Brown et al., 1992) in a coherent manner. It
Isthe result of joint standardization efforts of ECMA (European Computer
Manufactures Association) and NIST (National Institute for Standardization
and Technologies). Similar architecturesarediscussed in Wasserman (1990),
Zarrella (1990), Thomaset al. (1992), and Olle et a. (1988).

Accordingto Brown et al.’ s (1994) description, thereference model isa
catalog of service descriptions spanning the functionality of a populated
environment. The service descriptionsare grouped in variousways, either by
degreesof abstraction, granul arity, or functionality. Thehighest level division
classifies services either as end-user or as framework services. The former
services include services which support the execution of a project directly.
These are the services that tend to be used by those who directly participate
In the execution of aproject, such asengineersand managers. These services
are technical management, technical engineering, project management, and
support services. Thelatter services pertain to userswho facilitate, maintain,
or improve the operation of the computer system, such as a human user
performing atool installation task.
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Framework services form a central core with apotential relationship to
all other servicesintheenvironment. These services comprisetheinfrastruc-
ture of the environment. They include those services that jointly provide
support for applications, for CASE tools, and arereferred to as‘ the environ-
ment framework." It contains detailed descriptions of 50 framework services.
These services are classified as: object management, process management,
communication, operating system, user interface, policy enforcement, frame-
work administration, and configuration services.

Theenvironment framework doesnot takeinto consideration that differ-
ent CASE environments have different facilities and categories of require-
ments. In addition, different CASE environments have their own way of
defining interactions between requirement categories. Although this frame-
work describes a basic architecture for standardization, its focus is more or
lessonaninventory list of approaches(Dahanayakeet al., 1992). Itisnot easy
to acquire exact requirementsto describe aflexible architecture. It sayslittle
about the requirements for integration at the semantic level (Brown et al.,
1992). In Brown et a. (1994), these deficiencies are discussed in terms of a
service-based conceptual model, and this suggests that it is necessary to
distinguish conceptual issues, the services, from implementation issues, and
stress the need for a design context, the process that the environment must
support. Then the integration can be regarded as the specification of which
servicesare provided by the environment, and how these servicesarerelated.

Even though actual environments show mixing of servicesand function-
ality, it is becoming more and more clear that the services tend to be a
relatively fixed set of infrastructure services needed for modeling environ-
ments, regardless of domain or tool content (Brown et a., 1992). From a
conceptual point of view, the capabilities of environments are referred to as
services, which are abstract descriptions of the work that can be done. The
separation of the * conceptual’ world of the model from the * actual’ world of
existing tools and environments is of fundamental importance.

The conceptual viewpoint provides an abstract description of the func-
tionality that may be found in the environment. An actual viewpoint would
describe a particular realization of the conceptua viewpoint in terms of
environment architecture with specific tools and standards. Figure 3 illus-
trates the distinction between conceptual service description and a set of
actual tools, many of which may overlap in their functional capabilities.

Summarizing this section, one can say that the information modeling
process needs to addressissues involved in an integrated modeling environ-
ment, regardless of the availabletechnol ogy. The basic question, *What does
this environment do? can be answered when the services correspond to an
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Figure 2. Relationship Between Conceptual and Actual Worlds

Conceptual model An actual environment

Service A Service B

; _ End user tools and
Service Grouping Framework products

abstract description of the functionality of the environment that is offered to
its user. The conceptual model as opposed to actual models, the service
descriptions, tends neatly to partition the functions of an environment. When
an actual environment is examined, however, these neat conceptual group-
ingsare seldom found. Therefore, thisfunctional overlap isthereason why a
conceptual model isnecessary: one of the principle valuesisthat it provides
acommon conceptual basis with which to define problem-specific informa-
tion modeling environments.

TOWARDS A SERVICE OBJECT-BASED MODEL

In the field of information systems devel opment, there isastrong belief
that an understanding of theinformation systemsanalysisand design process
isimportant beforebringing up solutions. Information modelingistheprocess
concerned withinthisstudy. Central to thisprocessaretheservicesavailable
to the users of an environment. The mechanisms are away of implementing
services, and are concerned with the technol ogy available and thetechniques
that can be applied to connect different service components.

Opposed to this, the process encodes the set of goals of a project,
providing the context in which the services must be related. Figure 3 gives
an illustration of thisinterpretation.

When onewantsto model aninformation modeling environment that has
flexibility to supporting arbitrary modeling techniquesfor analysisand design
activities, thereisaneedfor aset of concepts, which guaranteesthisobjective.
The service-based model soffered so far have not succeeded in describing the
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Figure 3. Relationships Between Processes, Services, and Mechanisms
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required flexibility needed for analysisand design activities. Itisevident that
to derive a list of services, one needs to have some form of a CASE
environment architecture to define the rel ationships between the main areas
of requirements. One possibility was to take a number of architectures of
existing CA SE environmentsand then to seehow far these coul d be combined
Into one; thisapproachwaspartly adaptedinNIST/ECMA.. Another possibil-
ity isto use an object-oriented approach.

An Object-Oriented Service M odel

A framework based on an object-oriented approach is presented in
Dahanayake et al. (1992). This service model is used to formulate the
conceptual model of an information-modeling environment that provides
method flexibility. It originated from the need to evaluate object-oriented
database support for systems engineering environments at SERC (Software
Engineering Research Centre) (Dahanayake et al., 1995). The approach is
advantageous, as the object concept alows modularity. When a model
Increases in modularity, it enables a flexible architecture, which can be
modified more easily in view of maintenance and reuse of modeling tech-
niques.
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The general ideais that a particular repository is a ‘configuration’ of
functionalities, wheresuch functionality can beexpressed asaservicewithits
associated concepts and behavior, called a ‘service object.” Each service
object interacts with the world outside the environment as well as with the
other serviceobjectsaroundit. Itisnot necessary for each CA SE environment
to offer all the services defined by this object model. Any actua CASE
environment hasthe freedom to decide on its service objectsand its services.
The repository object is a configuration of service objects and gives the
capability to model the interfaces such that they satisfy the service users
demands without having to redefine the service.

TheDahanayakeet a. (1992) framework offersagood basisfor discuss-
ing what functionalities a CASE environment must provide. It serves as a
starting point for obtaining agreement on what an ‘ideal’ CA SE environment
would do in terms of the servicesit should provide versus other, less useful
approaches, such as defining its architecture or saying what tools it should
work with, or how it should be constructed.

Its application as ameans of uniformly highlighting specific distinctive
characteristics of existing CASE environments is particularly useful in the
evaluation of such environments, and has been demonstrated in Dahanayake
et a. (1992; 1995). Figure 4 illustrates the maor services of a CASE
environment engaged in information systems development activities. A
detailed description of theframework isavailablein Dahanayakeet al. (1992).

The approach adopted hereisto identify main CASE functionalitiesand
to evaluate their requirements and interactions and to see whether thereisa
possibility to relate these, according to the situation in a particular CASE
environment. The maor functionalities of a CASE environment can be
summarized as follows.

The servicesrequired for asystemsanalysis and designing environment
arerather complex. A CASE environment that supportssystemsdevel opment
activities hasto support multiple devel opment methods suitable for problem
situations. It needs a modeling servicethat is able to support awide range of
methods. When such models are devel oped, they need to be stored success-
fully, and should be easily accessed and manipulated. The requirements of
thisfunctionality are described by the storage and manipulation service. The
models and their represented data have to be consistent. For example, if a
designer removes an object type or adds arelationship type during thedesign
stage, consistent states have to be restored. It is necessary to have areliable
integrity and consistency service. When the devel opment team needsto use
different tools, they handle different views of the systems. It is necessary to
have a suitable view service to generate tools with their required modeling
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Figure 4. Service Model of a CASE Environment
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environment. This provides accessto commonly used objects. Aninterface
gives al users of a CASE environment access to user interfaces. System
development isnot possible without auser interface service. It isalso natural
to have a distributed development environment. Such requirements can be
defined by a distribution service. When teams are working on different parts
of the system, it is necessary to have concurrency control and security
services. It isaso necessary to have parallel developments of models. Then
there isaneed for a capable version service. When teams are working with
differenttools, they can sharethesamedata; therefore, itisnecessary tonotify
any changes, what is called a control integration service. This gives a
summary of expected services from a CASE environment for information
systems analysis and design activities.

The object concept is used to define amajor functionality as a service.
Therefore, the definition of an object isformulated as follows:

* Anobject consists of a unique identity, a number of properties, and a
number of actions. An action has an internal specification in terms of
assignment and interaction steps, which change the state of the object,
I.e., the value of its properties, and cause additional actions to be
executed.
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Basic concepts for a CASE environment are defined using this object
model. This formulates an informal description of the framework's concept
and it constitutes the basis for further reasoning.

Repository Object: RO isatuple (SO, UP, T)

» SO: Service Object is defined as an object describing an essential
functionality that abstractsthe essence of a CASE environment interms
of primitivesused to describe afunctionality and the associated actions,
to provide that functionality.

o SOP: Service Object Primitives is a collection of primitives a
service object supports in order to provide functionality. Each such
primitivedefineswhat conceptsare associated with it, independent of
other service objects.

» UP: User Primitive allows auser or atool to invoke from the service
object the desired actions according to its need to enact activities.

e T:Threadisthemanner inwhich certain servicesof serviceobjectswill
be involved to obtain the necessary action. The order in which such
service objects are activated is the Thread that provides the way a
particular repository implements a user-primitive.

The mgjor information systems devel opment functionalities of aCASE
environment aredefined in Dahanayakeet. al. (1995; 1992) using the service
object concept. The CASE environment is described as a configuration of
service objects, and each service object givesadetailed list of service object
primitives. Themodularity of theserviceobjectishel pful intheidentification
of therequired functionality, and it provides opportunities to specify service
object primitives of varying degrees of priority to satisfy required CASE
environment services. Therefore, this approach presents a concept structure
for a generic framework to describe a CASE environment, to fulfill the
flexibility requirements.

Inthefollowing sectionthisframework descriptionisusedtoidentify the
constituent of aCAME (Computer Aided M ethod Engineering) environment.

COMPUTER AIDED METHOD ENGINEERING

SERVICES

Information Systems Development (1SD) isachange processtaken with
respect to an object system in an environment by a systems devel opment
group using tools and an organized collection of methodsto produce atarget
system. The object systems are usually modeled using notations and tech-
niques, which are governed by the methods and supported by tools, which
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implement these methods and provide assistance in their use. To be able to
successfully model and define methods, one needstool sand techniquesat the
method devel opment level. These tools have to be capable of describing the
method concept structures and of specifying new toolsthat support methods.
These method development tools and methods together form a Computer
Aided Method Engineering (CAME) environment.

The scientific area of customized modeling support for information
systems development is popularly known as Computer Aided Method Engi-
neering (CAME). This area ams at the development of a flexible support
environment for information engineers engaged in information systems
analysis and design activities. By this, one means the stage where an
automated support environment has to produce the necessary information
modeling tools. The decisionsinfluencing the type of method to be used for
aparticular analysis and design activity are dependent on the problem area.
Once the modeling tools are available, the actual analysis and design takes
place. Therefore, there exists adistinction between putting together relevant
modeling tools to attain flexibility within the environment, and further
proceeding with actual systemsanalysisand design activitieswith thesetools
(see Figure5).

The overal functionality of the CAME environment is to provide the
services necessary to define the required modeling tools. The environment
should not only support different methods; it should also be able to support
theintegration of models devel oped by these different modeling techniques.
Therefore, it isnecessary for the environment to be able to support indepen-
dent modeling techniquesin aconsistent manner. Theteam should be ableto
specify theanal ysisand design techniquethey want to usein an environment.
Thereforeweusetheframework givenin Dahanayakeet a. (1992) toidentify
the basic services of a CAME environment.

Basic CAME Services

The concepts used to model the problem areaplaysacentral rolein each
description of a modeling tool.

Therefore, we need a suitable modeling service that can describe the
range of concepts used in analysis and design tools. When we develop
modelingtools, thedatamodel sdevel oped by suchtoolsneedto bestored, and
such stored dataneedsto be accessed and manipulated. Thisexplainstheneed
for a storage and manipulation service. When data is created, be it tools
metamodel sor operational models, the consistency and integrity of such data
needs to be maintained. This service is called the transaction service. To
createdifferent modeling tools, oneneedsaninter faceserviceto allow users
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Figure 5. The analysis and design stage comprises method engineering and
systems analysis and design in a CAME environment
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access to user interfaces. Such user interfaces share different views of the
databases. Without aview ser vice one cannot handle multiple modeling tool
facilities. This allows us to limit our attention to the services, modeling,
storage and manipulation, integrity and consistency, views, and interfaces,
which are considered to be the basic services that are important for our
research (see Figure 6).

Theservicesdistribution, control integration, security, concurrency control,
and version areasimportant to an environment asthe servicesmentioned earlier.
Their contributionismore predominant wheninformation engineersareactually
devel oping datamodel s during the systems design phase. Asthe area of interest
Is designing a CAME environment to provide an automated facility to design
problem-specific analysis and design toals, the design and generation of such
toolsisthe primary concern of this book.

SUMMARY
A theoretical view on information modeling environments and their
required flexibility is presented in the preceding sections. An informal
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Figure 6. Basic Services Relevant to Computer Aided Method Engineering
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definition of the key concept ‘service object’ is given. Finally, a CAME
service model using this concept to specify aflexible information-modeling
environment for analysis and design activitiesis outlined.

Various problems around systems development methods and CASE
toolsarediscussed. Today, information systemsdevel opment activities need
theadaptation of automated support to problem situations. By this, onemeans
that information engineers should be in a position to define the techniques
they want to use within an automated support environment. By considering
CA SE technology as a possible direction and directed attention towards the
information systems analysisand design stage of information systemsdevel-
opment.

This chapter explored the question, How can one describe a flexible
information modeling environment so that the concepts of theframework are
adequate to address the functionality of information systems analysis and
design according to a particular problem situation? Recent developmentsin

metamodel -based repository architectures and the service-based framework
approaches induced to consider an object-oriented service framework to
specify the functionality of a CAME environment.

Theconcept serviceobject to definethemajor functionalitiesof aCAME
environment in a consistent way is used. This is a crucial assumption,
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therefore, recall the essential stepsinreasoning. Inthereasoningisidentified
that the process of analysis and design could be used to set the goals of a
project andto providethecontext inwhich servicesareto besupported. These
services have to represent major functionalities in a modular manner, to
provide the flexibility for the selection and definition of the necessary
primitives used in a particular modeling technique. These techniques are
referred to in abroader sense asmethodsin thisbook. Therefore, the concept
of object isused to define aservice, which allows one to define the required
flexibility, using service object primitives.

CA SE environments directed at the modeling and generation of specific
tools will be referred to as CAME (Computer Aided Method Engineering)
environments. Anelaboration of thetheory aimed at improving theautomated
support for information modeling using tailorable environmentsfor analysis
and design activitiesis given in this book.
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Chapter 2

Architecture and
| mplementation |ssues

AjanthaDahanayake
Delft University of Technology, The Netherlands

Historicaly thefocusisonthetheory of how problem-specificsystemsdesign
tools can be supported by a Computer Aided Method Engineering (CAME)
environment based onserviceobject representation. Toarriveat animplementation
model, the conceptual model of the service object representation must be
formalized. Thistheory isfeas blewhentherei sadequatecomputer support. Many
researchershaveemphasi zed strongly that requirement specificationlanguages
shouldhavearigorousformal basis; however, thisneedfor formality hasnot been
generally acknowledgedinthefield of information systemsdevel opment. M ost
organi zationsand research groupstend to definetheir own methodsusing tech-
niques advocated within such methods that often have no formal foundation.
Discuss onsof modelingtechni quesarebased onnumerousexampl es, mostly using
diagramsandnotational conventions, toprovideapopular stylefor thedefinitionof
new conceptsandtheir behavior. InaCAM E environment however, whichgives
thefreedomto specify amodelingtechniquefromscratch, itisdifficulttoavoid
deficienciessuchasincons stency, lack of Structure, over specification, incompl ete-
ness, ambiguity, and redundancy without usingaformal approach. Inautomated
supportaforma mode isusedtoprovidestabl especificationsfor implementation.
Infact, animplementation can be seen asanother, enormoudly detailed formal
description, usualy inanimperativeprogramminglanguage. Toimplementthis
sophisticated automated support, formal specifications of the CAME service
descriptionwithadequateformal reasoningwerederivedearlier.

In thischapter the concentration ison using representation formalismto

Previously published in Computer-Aided Method Engineering: Designing CASE Repositories for the
21% Century, edited by Ajantha Dahanayake. Copyright © 2001, Idea Group Publishing.
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construct aproblem-specific CAM E environment. Such anautomated support
environment must beprovidedfor theinformationsystemsdesignstageinparticular
for the required UpperCA SE tools according to the methods chosen for the
problem situations. Thevisionisthat CAME environmentsmust functionasa
service-based, obj ect-oriented M etaCA SE environment that offerstheservices
required for modeling tools, and using a mechanism to interpret the required
modeling knowledgeand changingthevisual representationtotherequiredform
usingagraphi c object binding mechanism. Further, thisenvironment must offera
mechanismfor thepopul ationsof model specifiedaccordingtosuchUpper CASE
tools.

Accordingtotheservicedescription,aCAM E environment consistsof five
magjor services. Figure 1 providesagenera architectureof aserviceobject based
CAM Eenvironmentthatisabletosupport theactivitiesof users. Twotypesof users
canbeidentified: one, the* method engineers' that apply ametamodel editor to
specify metamodel sof designtool saccordingtoproblemspecificdesignactivities.

Figure 1. The general architecture of a service object based CAME
environment
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Whenthemetamodel of aparticular modeling techniqueisready, the method
engineer associates the required graphic representations to the concepts and
constraintsusingthegraphiceditor. Thesecondtypeof useristhe‘information
engineer’ whousesUpper CASE tool editor sto devel op model sof theproblem
domain. Thedatamodel sproduced by UpperCA SE tool sarepopul ated usingthe
popul ation editor when an object base is required. Such populations are the
operational model sof therequiredinformationsystem(seeFigure?2).
Thestructureof theCAM Eenvironmentisdeterminedmainly by thestructure
of themetamodel editor. Thebasic serviceobjectsof the CAME environment
formtheschemadescriptionlayer of theobj ect base. Themetamodel sthat describe
theprocessand product knowledge of modeling techniquesconstructed by the
meta model editor form the schemalayer of the object base. The datamodels
constructed using UpperCA SE tool saccording to the graphic representations
specified by the graphic editor form the datamodel layer. The datamodels
associ ated popul ationsconstructed usingthepopul ationeditor formtheoperation
datalayer. Anevolutionary devel opment strategy waschosenduring thedevel op-
ment of the CAM E environment; therequiredfunctionadity isaddedgradualy at the
appropriatestages. Thefirst stageistodesign and devel op ametamodel editor
which formsthe core of the environment and then to expand the environment
gradually with agraphiceditor and apopulation editor (seeFigure?2).
TheCAM Eenvironment prototypeimplementedinNeXTSTEP/ObjectiveC
isusedinthisbook tohighlight thearchitectura andimplementationissues. Thisis
theNeXTSTEPenvironment normally foundontheNeX T workstationsof | ntel -
based PCs, and it is a complete object-oriented environment built on Unix.
NeXTSTEPsupportsobj ect-oriented programming principlesandiscentered on
theconcept of objectsusing ObjectiveClanguage. NeX TSTEPcanbeseenasa
sophisticated obj ect-oriented devel opment environment. It embodiesthreepre-

Figure 2. The main support functions of the service object based CAME
environment and the prototype devel opment strategy
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ferred major componentsfor suchanenvironment, namely: alibrary of software
Kits, aset of development tool s, and an object-oriented language. NeX TSTEPIs
providedwithanextensivelibrary. Itincludesseveral softwarekitswhichcanbe
usedto create or adapt your own objects. Thesekitsinclude, anong others, an
application kit for building graphical user interfaces, and an indexing kit for
Interactionwith standardindex structuredatabaseserver.

Thesel ection of an obj ect-oriented devel opment approachisnot surprising
when one is trying to implement an object-based description of a CAME
environment. Theapproach adoptedisusedtodistinguish conceptual modeling
consi sting of object modeling andinteractionmodeling, user interfacemodeling,
implementationmodeling, and programming activities. Theseactivitiesareper-
formedinaniterativetop-downfashion. Theexisting set of object classesistaken
asthestarting pointineachiterationcycle. Duringimplementationmodelingthe
resultsof conceptual modelingandinterfacemodelingaretransatedintoclass
definitionsof an Object Oriented (OO) environment. Thisresultsinaclasstree
together with pseudo codedefinitionsof each object class. Theseclassdefinitions
areimplemented subsequently inthe OO programmingenvironment aspart of the
programmingactivities. Thisdesignanddevel opment gpproachissmilar totheOO
systemsandys sanddesi gnmethods, whichincreaseincremental ly thefunctionality
andstructureof thesysteminimplementation. Further, thisdes gnhasthecapability
togeneratemethod-specific UpperCA SE tool saccordingto problemsituations.

Theremainder of thischapterisorganizedasfollows. firstisanel aborationon
thefunctionaity of aCAM Eenvironmentfollowedby thearchitectureof the CAME
environmentsmetamode editor, inwhichmetamode sof UpperCA SEtool scan
bespecifiedaccordingtothistheory isgiven. Thenfollowsthearchitectureof the
popul ation editor, which popul ates datamodel saccording totools, which are
generatedfor theproblem situationsand based onametamodel or themodeling
knowledgeof thetechniqueassociatedwiththedesigntool. Thearchitectureof the
graphiceditor isfollowed by asummary, and conclusionsendthischapter.

FUNCTIONALITY OF THE CAME ENVIRONMENT
Accordingtothistheory theCAM E environment supportstheconstruction of
UpperCASEtools. First, itisnecessary todefinethemetamodel associatedwith
themodelingknowledgeof atechniquerequiredaccordingtotheproblemsituation.
Secondly, therequiredtool sfor theinformation systemsdesign processhavetobe
generated accordingtothedefined metamodel . Oncethetool sareavailable, the
real information systemsdesi gn processand thepopul ation of thedatamodel swill
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takeplace. Themain modules—themetamodel editor, thegraphiceditor andthe
popul ation editor—primarily describethefunctiondity of the CAM E environment
which supports the generation of specific UpperCASE tools as required for
problemsituati ons. Thesemodul esneed tocommunicateandinteract tofunctionin
therequired manner. Theuser interface of theenvironment hasaconsiderable
Influenceontheobjecttypes interrelationshipsandinteractions; therefore, firstthe
user interfaceof the CAM E environmentistakeninto account usingthesimple
prototypetoexplainitsfunctionality.

Theuserinterfaceof the CAM E environmentisbasedonlayersof interfaces.
Thehighestlayer, calledtheM AIN, alowstheuser tocommuni catethroughmenus.
WhentheMAIN isstarted, amenuwill appear onthescreenwith someitemsto
choose: Repository, Popul ation, Representation, Hide, Quite, etc.; anexampleof
aMAIN menuisgiveninFigure3.1f theuser chooses
acommandfromamenuwherethecommand name
endswith an arrowhead, the_M AIN wi || promptthe Menu of the CAME
user toobtainmorei nf_orme_m on. Theitemspopula- Environment
tion andr epr esentation giveaccesstothepopula-

tion editor and graphic editor, respectively. The

Repository item gives access to the meta model  [[jnfg

Figure 3: The MAIN
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of themetamodel editor, populationeditor,andthe  [Fm it

o
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Figure 4. The Module Structure of MAIN and its Underlying User
Interfaces
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graphic editor.

TheMetaModel Editor

The metamodel editor formsthe kernel of the CAME environment. The
serviceobject model formsthefunctional specificationsof themetamode editor
of theCAM E environment. Figure5showsthei mportant functiona separationsthat
areembedded accordingtothisservicedescription.

Intheremainder of thissubsection, wefocusonthefunctionality of themeta
mode! editor that must support theconstructionof metamodels. Todothis, themeta
model editor requiresthefollowingservices.

» TheModeling ServiceObject specifiedas:

« ametamodel base
Describing mainly theservicesof themodeling serviceobject. Themeta
model baseconsistsof anOS _basisprovidingtheobject structureand
graphical constraintsfor designingametamodel, andan OS editor to
verify thepopulationderivationrulesfor aspecificmetamodel according
to syntax rulesof object structure populations. Figure 6 representsthe
Interactionsand theinformal modul estructureof themain modul esof the
modeling service object.

» TheStorageand Manipulation ServiceObject specifiedas:

» acentral repository that storesall dataof the Metamodel editor. This
central repository should supply asimplestore-query-add-del ete-read
mechanismprovidingfacilitatesfor thedevel oped model sandmodeling
componentsto bestored and manipul ated. Thenon-graphical constraints

Figure 5: The Main Functional Separations of the Meta Model Editors
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Figure 6: The Module Sructure of the Meta Model Bas
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arenot used at thisstage of development, and haverestricted themain
concerntothepopul ationsof object structures; therefore, oneonly need
thestorageand mani pulation structureinterpretationthatisrelevant to
theaobject structuresandtheir complex datastructure popul ations.

» Thetransaction Service Object specifiedas:

* Anapplication control basewill supply accesstotherepository ina
methodically correctway. Specifically, itwill check thepreandpost priori
rules of atechnique by communicating with OS editor, and initiate
transactionsprovidingthelntegrity and Consistency toincorporatethe
information passing processrequiredfor thedevel oped metamodel stobe
stored and manipulated. The Transaction Sructure required for the
processof information passingisexploredintheunderlyingtransaction
modd of theplatformwherethe CAM E environmentwill beimplemented.

» ThelnterfaceServiceObject specifiedas:

» agraphicbhase
Describesmainly theserviceof theinterfaceserviceobject. Thegraphic
base consists of a graphic_basis providing graphic structures and
graphicconstraintsandagraphic_editor inasimilar fashionasfoundin
metamodel base. A graphicuser interfacetoeditandmodify all typesof
metamodel siscalledaDiagramEditor (DED). A DED will providethis
graphicinterfacetoanOS _editor. SincetheOS _editor already takescare
of methodical constraints, DEDs need to be concerned only with the
graphic structures and graphic constraints, and the mapping of user



Dahanayake 23
Figure 7: The Main Objects that Define the Character of the User
Interface
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actionstotheassociated OS _editortoprovideuser interfaceservice. A
graphic_basisandagraphic_editor areintroducedinasmilar fashionas
for amodeling service object for this purpose. Thisaso explainsthe
separationof modelingconceptsfromtheir graphi crepresentationsduring
metamodeling to allow amodeling concept to appear intherequired
graphicform. Theinteractionsandtheinformal modul estructureof themain
modulesof theuser interfacearegiveninFigure?.

Figure 8: View Representator and its Position with Respect to the Other
Modules
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» TheView ServiceObject specifiedas:
e aviewrepresentator
Allowsthe components of metamodels aswell asfragments of meta
model sto appear in different modeling techniques. It representsview
structures of view service object to create multiple representations of
object structurepopulationsinrelationto Upper CASEtool s, andtorelate
themtotheunderlyingmetamodd of themodeingtechniqueintherequired
manner. Theview representationisillustratedin Figure8.

ThePopulation Editor
Thepopulation editor supportsthepopul ationof metamodel saswel | asdata
models. Thepopulation editor extendsthekernel serviceof themetamodel editor
tosupportthegenerationof popul ationswithinaCAM E environment. Theservices
that arepart of the popul ation editor havetointeract withthekernel servicesto
functionintherequired manner. Thereareanumber of extensionsrequiredforal
theseinteractionsto hel ptheuser to generate Upper CA SE tool sinaneasy way .
Theimportant functional extensionsrequiredtoextendthemetamodel editors
kernel descriptionarediscussedinthissection.
For thepopulation of such schemas, thepopul ation editor requires:
» extensiontotheRepositorytoprovide:
* Anobjectbrowser
An object browser gives accessto all objectsin the active repository
defined under ametamodel by followingcertainpaths. Thisissimilarto
path expressions. Thisenablesauser to select therequired object types
to bepopulated.

Figure 9: Populatable Object Types and Population Managers
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* A populationmanager

Anobject PopManager isintroduced to storean object’ spopul ationand
toprovideaccesstoit. ThiscanbeseenastheSoremechanism. Eachtype
of object that may be popul ated hasits own type of PopManager (see
Figure9), because each typeof object needsdifferent servicesfromits
PopManager.

» extensiontothegraphicbaseto provideanumber of graphicobjects:
» Popeditor

Aneditor that allowstheuser to addinstancesto database popul ations.

* Addinstancedialog

Toprovidebas cupdateinteractions.

» extensiontotheapplication control basetoprovide:
* PopulationManager Control Meeting Point

Anobject PopManContr MPoint totakeover thetransactionsrequired
duringtheinformation passing process.

InstanceV alidationchecker

To maintain pre and post conditionsfor the consistency management
accordingto population derivationrules.

TheGraphicEditor

Thegraphiceditor supportsthebinding of visual representationsof themeta
model componentstothenecessary representational requirementstoarriveatthe
required modeling technique, specified according to the requirements of the
problemsituation. Thisstageinvolvesthegenerationof UpperCA SEtools. Forthis
purposethegraphiceditor requires:

» extensiontothegraphicbaseto provideanumber of graphicobjects:

Library of graphicobjects

Tosd ecttherequired graphi crepresentationsaccordingtothespecifica
tionsof themodelingtechnique.

Editrepresentation

An editor that can be used to select the required meta model of the
UpperCASEtool.

Selectrepresentation

An editor to select and bind graphic objectsto the modeling concepts
described under themetamodel of themodelingtechnique.

Draw representation

Toselecttherequired UpperCA SEtool andtoassignaname.
DiagramEditor
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Aneditor that actsastherequired UpperCA SEtool editor.

THE META MODEL EDITOR

Thetheory that describesthefunctionality of themetamode editorisfeasible
onlywhenitisimplementedinaprogrammingenvironment. Inthissectionthefocus
iIsonthearchitectureof themetamodel editor. Theobject model of eachmodule
discussed under thefunctional descriptionof themetamodel editor providesthe
important architectural buildingblocksthat arerequiredfor thispurpose. Figure5
showstheimportant functional separationsthat areembeddedinthearchitecture.

Architectural | ssues

Theobjectmodd of themetamode basecons stsprimarily of object structure
componentsand graphical constraint components. Theobject model consistsof
object typesbearing thesamenameasthecomponent (system) being model ed.
Thisissuchthat acomponent canbecons deredtobeaninstanceof anactiveobject
classthat exchangesmessageswithother components, aswel | assomethingthat has
staticrel ationshipswithother objects.

Theobjectmodd of therepository consi sting of aschemadescriptionlayer (or
serviceobj ect descriptions) andaschemalayer, will bereferredtoastherepository
object. Therepository will register any instanceof object typesderivedfromthe
metamodel base. Figure 10 showspart of theobject model of arepository. The
relationshipregistrationisfilled by sending aregister messagetotherepository.
Eachinstanceof object typeisrequiredtoknow thenameof theclassof whichit
Isan instance. Thisallowsthe repository to handle queriesthat include class
information.

Figure 10: Part of a Repository
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Figure 11: Additional Administration for an Active Repository
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Anactiverepository extendsarepository by adding messages, whichmay be
sent by a Diagram Editor (DED). These messages are "subscribe" and "un-
subscribe”. A DED subscribestoanobject whenit hasat | east onerepresentation
of that object. Similarly,itwill un-subscribefroman object whenitnolonger holds
any representationof that object. Activerepositoriesrequireextraadministration.
Each subscribe message resultsin the creation of a subscription relationship
Instance. Anactiverepository keepstrack of all thesubscriptionsit hascreated (see
Figurell).

Theobject mode of themetamode editor'sgraphi cbaseor theuser interface
isathree-layer modulestructure. Inthismodul estructurethereisonemainobject
foreachlayer of interfaces, i.e.,theMetaModel Editor (METAED), theGroup
Editor (GED) andtheDiagram Editor (DED). TheMETAED layeristhehighest
layer of themetamodel editors’ user interface. The DED istheactual diagram
editor. Atthispoint anadditional editor isintroduced betweentheMETAED and
DED: theGroup Editor (GED). A GED providesaccesstoanumber of DEDsof
thesametype, e.g., anumber of metamodel editors. Thisallowsauser tokeep

Figure 12: Overall Class Tree of the User Interface
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short-cuts to frequently used diagrams or to have several different diagrams
organizedinagroup. A GED isaDED restrictedtoshow iconsthat represent DEDs
Instead of general graphicobjects.

The kernel model of the system is extended by avisual and acontroller
component accordingtothemodd view control principleasintroducedinSmd ltalk
(Goldberg, 1982). Visua objectisusedtorefer toaviewinthemode view control
principle, asitismid eadingtouseview herea ongs detheconcept of view given
inthisbook. Thesecomponentscanbedescribedintermsof editorsasfollows:

» Model: Thisobject representstheinternal dataof theDED. Itisresponsible
for alteringinternal dataheld by themodel, whichmay inturnactivatean
updatemessage.

* View: Thevisua object handles output to the screen, which isavisual
representationof themodels' data. Thedifferent control objectsarecontained
inthevisual objecttoallow userstomodify theaccessdata.

» Controller: Thecontroller object processesuser input. Every user action
correspondstoamodification of avisual object. Theseactionsaretrand ated
by thecontroller object into specificaction messages, whicharesenttothe
modd.

Figure 12 representstheoverall classtreeof theuser interface. Figure 13
showstheinteractionswiththeactiverepository alongtheeditor hierarchy.

The interaction of the main modules of the meta model editor plays an

Figure 13: Editor Hierarchy and Interactions with Active Repository
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important roleduringthedesignof the CAME prototype. Theoverall interaction
model of themetamodd editorisgivenintheFigure14. Thesolidarrowsrepresent
messageflowsandgrey arrowscorrespondtocontrol flows. Inthisfigureanumber
of new obj ectsarevisualized together withthemainmodul esand obj ectsdiscussed
under thefunctional model of themetamodel editor. Thepositionandroleof all
thesecomponentswill beexplainedwhenappropriate.

DEDsneedtheir ownadministrationtokeeptrack of therepresentationsof the
objectsintherepository. SinceaDED isan abstract concept, therepresentation
typeit will handlealso needsto beabstract. Thereforeageneralized graphical
object type (graphic object) is introduced, which plays a basic role for the
representation of view typesof al concretegraphical editors. Figure15showsthe
representation relationship. Not all graphic objects are generalized objects,
becausetherepository will storeany instanceof atypethatiseventua ly generalized
toobject (or, in OO terms, thetypeisderived from object), and thisallowsthe
DEDstostorerepresentationdataintherepository. Therepresentationrel ationship
typeobject actson behalf of theview representator.

Atthispointitisnecessary todiscusstheapplicationcontrol bases function
ondifferent editorsor objects. A controller object called Application Controlleris
introduced. Thisobjectisuniquefor eachsession, i.e., thereisalwaysonly one
ApplicationController object activeno matter how many repositoriesareopen. Its
maintaskisto providetheuser withameansto create, open, and performother
functionsonrepositories. It a soinitializessomeother objects, whicharenecessary

Figure 14: Overall Interaction Model of the Meta Model Editor

create_x

maodify x
dolmLy

i ! ™ g

0S_editor DED =

L - -
k update
; \ withdra / apan
{unjregister
query query
\ %}auhacribe
's ™ 'S ™ ' - ' i B
MAIN Application Al:tl\!l'e DED
L J .Controller, ke, . leon |
/WX {unjregister i
po \ {un)subscribe
open {un)register update query
{unjsubscribe withdra;\ updats
uery . /ypdate 3 é
= £ withraw \(_ *

~ METAED GED |

L. A L A
[

open

-

update | GED
lcon

L -

-



30 Architecture and Implementation Issues

for the DEDs. The Application Controller object maintains a list of active
repositories and is connected to the MAIN of the user interface via each
correspondingrepository.

Firsof dl, DEDs, METAEDsand GEDsmust storethe rinterfaceinformation
somewheretokeepitavailableacrossworkingsessions. Theobviousstorageplace
istherepository. Thisway, arepository keepsarecord of acompleteworking
environment. A repository may receivethreekindsof messages. Thefirsttwo,
register andunregister, add anobjectintotherepository and del eteanobject from
therepository, respectively. Thethirdmessage, query, askstherepository toreturn
alist of objectssatisfyingaspecified condition.

Theobject OS_editor isusedtovalidaterequestsandto determineconse-
guencesof manipulations. Theoutcomeof thesecal cul ationsisusedtokeepthe
repository consistent. All theinformationtheOS _editor needsto performthistask
Isstoredintherepository. Thereforeit only needsto know therepository. The
METAED ontheother hand needstokeeptrack of theOS _editor, all activeDEDs,
GEDs, andtherepository. Thisleadstotheobject relationmodel giveninFigure
16.

OnlyanOS _editor should(un) register objects, asthey areresponsiblefor the
consistency of the repository. Both the OS_editor and DEDs can query a
repository. To enable a DED to be notified about changes, it recognizes the
messageupdateandwithdraws. Anactiverepository will send anupdatemessage
whenit hasdetermined achangeinanobject subscribedtoby theDED. Whensuch
an object isremoved from therepository, therepository will send awithdraw

Figure 15: Administration of Objects Visualized by a Diagram Editor
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message.

Thecreationof objectsisdonethroughOS _editor. Sinceobject creationcan
requireany number of parameters, it cannot besolvedgenerically by anOS _editor.
Each Objecttypethat an OS_editor managesthereforerequiresitsowncreation
message. Anadvantageof thisexplicithandlingof instancecreationof eachobject
typeisthat it providesagood point todo prior checksontheoperation. Deletion
canbehandledgenericalybyanOS _editor andisdonethroughthede etemessage.
Every layer intheuser interface (METAED, GED, or DED) isupdated to the
repository separately. Thisbecamenecessary becauseitisnot necessary toupdate
thewholeuser interfacehierarchy totherepository. For example, asimpleupdate
of thetitleonthenamepanel of DED undergoesthemessagechainbetween DED
andrepository, butinthecaseof changingthenameof GED-icon, itcarriesawhole
set of messagesway downtothelastlayer.

Theobject model of themetamodel editor'soverall designisgiveninFigure
17. Notethenew concepts, which areintroduced solely to explainthegradual
extensonof dataandfunctionality. A windowjust showssomegraphicobjects. An
editor actively managestherepresentationrel ationship of thesegraphicobjectsby
subscribing to the represented object. Anicon isjust a picture representing
something; anamediconaddsanametothispicture. ADED _iconlimitsthethings
thenamediconcanrepresenttoDEDs. Likewise,aGED _iconlimitsrepresentation
toGEDs.

MetaModel Editors’ User Interface
Anoverview of metamodel editors’ userinterfaceisprovidedinFigure18.
TheRepository itemisfor theopening of themetamodel editor, whichactivatesthe
Repository submenu. A window will appear for initidizationof arepository filefor
themetamodel. Oncearepository iscreated it givesaccessto theunderlying
Interfacestructureof themetamode editor.

Figure 16: Relations METAED Have to Maintain
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Figure 17: Overall Object Model of the CAME Environment
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Apartfromcreatingandopeningarepository, thesubmenuitemsprovidetwo
other facilities: Snapshot to makeaback-up of anopenedrepository, and Delete
tosdectarepository filefromthedisktoremoveitcompletely. After creatinganew
(New) or opening (Open) anexisting repository, theM ETAED window shownin
Figure18appears; thisisthetop-mostinterfacel ayer of themetamodel editor. The
repository itemallowsmorethan onerepository to beopened at any giventime.

Onthetop of theeditor paneappearsthewindow title=* pathname’ + editor
title. Thetop part of theMETA ED window showsthetypeof thenextlevel editors
andanimagetoindicatetheMETAED. Therearetwotypesof editorsthat canbe
activated, Object StructureEditors(OSE) and Task StructureEditors(TSE). The
TSEwill benot discussed here, becauseonly the OSE isrequired at thisstageto
devel opmetamode sandtodescribethefunctionality of thisCAM E environment.
A Group Editor (GED) canbecreated by dragginganddroppingthe OSE _iconon
tothebottom part of therepository window. OtherwiseanavailableOSE _iconcan
behighlighted, toopenaGED. Figure 19 presentsapart of theobject model of the
METAED userinterface. TheMETAED containsanumber of icons, andeachicon
representsaGED instance.
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Figure 18: The Meta Model Editor’s User Interface
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The group editor

Group editors manage anumber of diagrams. A diagramisfor examplea
schemadefinedinobject structures. EachdiagramiseditedthroughaDiagram
Editor (DED). Whenan OSE_iconopensaGED, awindow appearsasinFigure
18. Thetitlebar containsanamethat identifiesthekind of GED andanamethatis
thesameasthat of theiconsinthe METAED window. Under thetitlebarisa
GED _iconandanimagefor identifying GEDs. ThisGED _icongivestheuser

Figure 19: Object Model of METAEDS User Interface Parts
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control over theGED. Thedragdropfacility createsanew DED inthescrollable
areawhere the active diagrams are represented by an icon. A name uniquely
identifieseachicon. Theuser communicateswithaGED throughicons. Thedrag-
drop of aGED _icon generates aunique messageto the GED to generate new
diagrams,aDED _icon. A doubleclickonaDED _iconopensadiagrameditor.
Whentheuser clicksonthenameof thediagramicon, the GED getstheupdate
messagefollowed by thenew nameasinput fromtheuser.

Fromthediscussionaboveitisclearthat DEDs, GEDs, andMETAEDshave
muchincommon. Infact,aMETAED isaspecializedformof aGED. GEDsare
Specialized DEDs. Therefore, theobject model of GEDsgenerdizesaMETAED' s
object model. Figure 20 showsthismodel inwhich someextraconstraintsare
needed: aGED iconrepresentsaGED, aGED may only show DED icons, and
METAED may only show GEDicons.

The diagram editor

Theuserinterfaceof aDED, showninFigure18,ismuchthesameasthe GED
user interface, exceptthat it’ sscrollableareamay containany graphicobject. The
only differencebetweenaDED andaGED isthat DEDsmust knowtheOS _editor
they must usetomani pul atetherepository. TheDED communi cateswiththeuser

Figure 20: Object Model of the GED and METAED User Interface
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by meansof buttons, Pop UpM enus, and dial og boxes. ThePop Up Menusappear
usualy whentheright buttonisheld down. What particular Pop Up Menuappears
dependsontheposition of themousecursor. If thecursor ispositioned over an
object, aPop Up Menu specificto that kind of object appears.

A buttonitem canbesel ected by hol dingthemousebuttondown, puttingthe
arrow over thedesireditem, andthenrel easingthemousebutton. After anitemis
chosen, for exampl eEntity, it can bepositioned onthediagram editor; awindow
for selectionor for enteringthenamenormal ly follows. Someitemshavetheirown
sub menus, andthey appear automatically whenthemousecursor isplaced over
suchanitem. Selectinganitemfromoneof thesesub menusisdoneinthesameway
assdectinganordinary item. If theeditor needsinformationfromtheusertoperform
the selected action, one or more dialog boxes agppear. When the mouse cursor is
positionedover thedia ogbox, therequestedinformationcanbeenteredby typingtext
and/or clickingonabutton.

Toaddgraphical constraint aspecial buttonisavailableintheDED. When
clickedonitthisbuttonwill behighlighted. Tosel ect therequired constraint, aPop
UpMenubd ow theconstrai nt button hasto bedragged ontothedesired constraint.
After aconstraintisselected, it can beaddedintotheschemaby clickingonthe
positionwhereit shouldbeadded. Constraintsareconnectedtotheroleitrelates
toby draggingalineusingtheleft mousebutton. If itdragstoanincorrectrole, it
will not be connected. A double click on the constraint checks if the current
popul ationsatisfiestheconstraint. A panel appearsallowingauser toperformsome
operationsontheconstraints.

| mplementation issues

Animportant realizationof themetamodel editor isintheimplementationof
the DED which handl estheseparati onof modeling conceptsand visual aspectsof
objectswhicharedescribed asgraphic structures. Each object hasonemodeling
concept associ atedwithit, and canhaveany number of visua representations. The
visual representations, whicharecalled graphic obj ects, know whichmodeling
concept object they areassoci ated with, and thisenablesthemto handlechanges
totheobject. Tokeepthevisual aspectsand modeling conceptsconsistent with
eachother, alist of mappingsiskeptinacentra place. If onevisual representation
changesthestate of themodeling concept object, thischangeisforwardedtoall
other visual representations.

When auser opensor createsaDED, awindow with the graphic_editor
appearsonthescreen, whichisthetop-most module. Thisisusedtoimplementa
maj or part of theuser interface, andto control most of theinteractionwiththeuser.
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Thecreationof anew object typefor exampl e, ishandled by thegraphic_editor.
Thegraphic_editor sendsamessagetotheOS _editor, whichperformstheactual
creationof thenew objecttype. Thegraphic_editor storesglobal dataabout the
visua aspectsof theobject structureit maintains. Thisdatacons stsof areference
totheOS_editor that handlesthemodeling concept sideof theobject structure, the
visua tomodeling concept mapping mentioned above, andanadminigtrationof all
visual objects. TheneedtostoretheOS _editor isself-explanatory. Themapping
Is used to pass relevant information along from the user to the conceptual
counterpart, whichinteractswiththevisual objects. Itisalsousedbackwards: if a
modeling concept objectisdestroyed, all associated visual objectswill alsobe
destroyed. Theadministrationof al visual objectsisusedtosaveandload complete
object structures; avisual representation of thisispresentedin Figure21.

OS editor

TheOS _editoristheplacewhereall dataabout themodeling concept objects
isstored. Itisresponsiblefor theconsistency of all data, and canprovidederived
information. Todothis, theOS _editor hasproceduresto createnew objects, to
retrieveor todestroy existingones, andtoderiveinformation.

TheOS editor canprovidethefollowingderivedinformation:

» Thepater familiasof agivenobject
» Whether or not agiven object may begeneralized or specialized

TheOS _editor knowswhich objectsarepart of theobject structureat hand,
andisabletoderivesomeinformationabout them. Therefore, todescribetheobject
Structure compl etely, additional informationisneeded. For example, itisnot
enoughtoknow that role A ispart of theobject structure; itisal so necessary to

Figure 21: DED and its Underlying Interaction Modules
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knowwhich(if any) objectisitsbase, andinwhichrelationshiptypeitiscontained.
Thiskindof information, thestructureof themodel , i skeptintheconceptua objects,
whicharesubclassesof OS basis.

Controller objects

Theuser communi cateswiththeprogramthrough DEDs. Whentheuser wants
something which effectsaconceptual object, the DED sendsamessagetothe
OS editor. Creation and destruction or del etion of aconceptual objectisdone
thoughanOS _editor. Creationanddeletionof visual objectsor graphiccounter-
partsof conceptual objectsisdonethroughaDED, consisting of anobject Ose
Controller and an object graphic_editor. In the tool, only one OS editor is
required. Several DEDs can be opened or created. A Repository Controller
createsan OS_editor when the user opensor createsarepository. Repository
Controller passestheOS _editor totheA pplication Controller. TheApplication
Controller, whenopening or creatingaDED, passesthisOS_editor totheOse
Contraller.

OS basis and graphic_basis

TheOS basisandgraphic_bas streescapturethestructureof themetamodel
thatisbeingedited. All object structureconceptshaveacounterpartinOS _basis
and graphic_basis trees. The structure that is kept in the OS_basis object is
manipulatedby theOS _editor, whilethestructurecontainedinthegraphic_basis
objectsismanipulated by thegraphic_editor. TheOS basishierarchy of object
structures, whereasimilar graphic_basishierarchy existsfor itscounterpartsin
graphicstructures, isgiveninFigure22.

Specification of graphical constraints

Thegraphical constraintsareintroducedinasimilar fashiontoobject struc-
tures, toenter andadmini ster graphi cal constraints. Thegraphica constraintsdiffer
Inthreepoints. syntax, semantics, and graphicrepresentation. Thisconsistsof
extensonstotheOS basisandgraphic_basis,and someadditionstotheOS editor
andthegraphic_editor. OS itemisthesuper typeof all object structureobject
types, andthisOS itemistakenastheroot of theextensiontreeof constraints.
OS item handles all required administrative functions, such as accessto the
OS _editor.OS_congtraintisanabstract typeuponwhichall constraintsarebased.
Todeterminethesubtypesof OS_constraints, all constraintsarecomparedand
their requirementsarematched. Based onthismatching, groupsof constraintsare
distinguished (seeFigure22).
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Figure 22: OS basis Hierarchy of Object Structures
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Animportant criterionisthetype of object the constraintsare allowed to
associatewith. Thisiscreated by generdlizing constraintsintosix groupsandadding
agrouptyperesultinginahierarchy treeasshowninFigure23. Thisdistributionof
constrainttypesover abstract super typesal | owsamaximum shearing of proce-
duresanddata. For example, al standard constraintsusethesameprocedurethat
associatestheconstraint withaset of roles, whereasthecoll ectiontypeconstraints
sharetheprocedurethat associatestheconstraint withaconcept typeor collection
type.

Thestructure of the extension of thegraphic_basistreeisthesameasthe
structureof theextensionof theOS _basistree. Theseextensionsimplement theuser
interfaceandhandlethevisual representationof congraints. Theextens onsconsist
of procedurestocreate, store, andretrieveobjectsof typegraphic_constraintand
OS _constraint. Theseproceduresareanal ogoustotheexisting proceduresthat
handleall other object typesof object structures.

Thefina implementationmode isobtai ned after gpplyingthetransformations
for generdizationand specializationtotheobject model ssofar discussed, retaining
thefunctiona separationsaccordingtothetheory formulatedinpreviouschapters.
Thedetailed classtreesarenot included here, asmost of them havebeen already
explainedindetall.

THE POPULATION EDITOR

Thefunctionality of thepopul ationeditor isgivenabove. Inthissectionthe
focusisonthearchitectureof thepopul ationeditor. Theimportant architectural
buildingblocksthat arerequiredfor thispurposeareput forwardinthefollowing
section.
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Figure 23: Resulting Graphical Constraint Hierarchy
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Architectural | ssues
Thissectiondescribestheextens onsneeded for theadministration of popu-
lations. Inthefirst casetheobject model of therepository isextendedwithanextra
obj ect PopManager whichiscentral tomaintainingtherel evant populations, andin
thesecond casetheobject model of thegraphicbaseisextendedwithapopeditor.
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Thirdly theextensionsrequiredfor theapplication control basewill bediscussed
under theobject PopM anContrM Point.

Theinteraction between obj ectsareconcernedwiththeadding of aninstance
tothepopul ation of an object which causesinteracti on between the PopM anager
and pop editor. The scenario istriggered by agraphic_object, which sendsa
messagetoitsassociated OS objecttoedititspopulation. TheOS object creates
apop editor, which handlesthe actual adding of anew instance by telling the
PopManager toadd aninstancetothepopulationof OS_object whichiskeptin
thePopManager. ThePopM anager createsadia ogbox, theuser entersthevalue
of thenew instance, whichisthenretrieved by thePopM anager and propagatedto
the pop editor to keep the display up to date: Figure 24 provides a general
Interpretationof thisdescription. Therearefour objectsof concernwheninterfering
withpopulations; thisisvisualizedinFigure25.

ThePopM anager isan object that storesapopul ation and providesaccessto
it. Each typeof object that can be popul ated hasitsown subtype PopM anager,
becauseeachtypeof object needsitsdifferent servicesfromthePopManager. For
example, the PopManager of an entity type must propagate the value of new
Instancesto objectshigherinthegeneraizationhierarchy. Thegenera interaction
model rel atingto popul ationgenerationisshowninFigure26.

ThePopManager istheactual abstract datatypeandiscontinually savedto
andrestoredfromdisk. Instead of direct communicationwiththePopManager, all
communi cationsarehandled by acentral Population M anager Controller Meeting
Point (PopM anContrM Point). ThisPopM anContrM Point providesaneasy inter-
facetothe PopManager by handling all disk accesstransparently. Further this
object is guaranteed to have only one instance per population on disk. The
PopManContrM Pointisal sorespons blefor keepingthepopul ationcons stent by
communicatingwiththeOS _editor. Thepopulationderivationrulesareusedto
makesurethepopulationisconsistent if theschemaisconsi stent. PopM anager
Controller isthe actual object that most of the graphic base objectswill useto
Interfacetopopulations. ThePopM anager Controllerinheritstherel evant methods
anddatafromPopManager andfromOS_object. Duetothetechnical impossibility
of implementing multiple inheritance directly we have introduced
PopManContrM Point totakeover thisrespons bility withthehel pof aforwarding
mechanism. Figure27 showsaninterpretationof the PopM anContrM Pointsrole
inrelationtocommuni cationandinteractionswithother object modules.

Themain purposeof PopManager Controlleristoprovidegroupsof related
user interfacesasan easy way of keepingtheoverall graphicbaseconsistent. In
addition to this, PopManager Controller provides a means to have an active
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Figure 24: Interaction Model of the Adding of a New Instance
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Selecting an object
Thepopulationeditor first givestheobject browser to select anobject that will
eventually be populated. The object browser issupported by a Choose Object
window (seeFigure28) whichshowsalist of all objectsintheactiverepository from
whichthepopul ationcanbeedited. All object typesarepopul atedinthesameway .
Anobject canbeselected by clickingonanobject nameor, if required, thewhole
action canbecancelledwiththeuseof theCancel button, whichreturnstheuser to
thePopulationsub menuand enabl esthe Edit Popul ation button. Thepopeditoris
opened by clicking on the edit population, and thisformsthe main part of the
populationeditor'suser interface. Thepop
editor andaddinstancedial ogwindowsare

Figure 28: Population Editor's updated automatically whenanew objectis
Access Menu and Object Browse g ected.

META-CAME Population .
info 1~ | Edit Population Pop editor

Repository | Complete Popul'atl'on - - .
Thepopeditor consstsof ascroll view
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Windows

editthepopulation. Atthetop of thescroll
viewisabar withthetitlesof thecolumnof
Quit g i Instances. Thetitleof thefirst columnisthe
- nameof thecurrent object becauseit never
contai nsinstancesdefinedinanother ob-
ject. If acollectiontypeisbeingedited, the
second column shows the name of the
element object. Inthecaseof arelationship
thenames, of therolesareshown.

Aninstancecanbesdl ected by clickingonit. Inthecaseof arel ationshipsor
anentity, theentireinstancei ssalected. A set canbeedited by sel ectingoneinstance
by clicking ontheelement, thesecond column of theinstance, or anentireset by
clickingontheset, thefirst column. Aninstancecanbede-selected by clickingon
itagan.

TheDeletebuttoninthepop editor window canbeusedtodel eteinstances
fromapopulationof anobject. Itisdisabledif nothingissal ectedinthescroll view.
If theuserisnot allowedtoedit apopulation, thisbuttonisdisabled. Deletion of
Instancesmay havean effect onthepopul ationsof other obj ectsthat areconnected
totheobject that theinstancewasremoved from, for example, generalization,
speciaization, rel ationships, and collections. | nstancesrel ated totheseinstances
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will bedeleted, andthepopul ationwill beupdated automatically.

The ‘add instance dialog...” button can be used to add instances to a
population. Whenauser isnot all owedto addinstancesto popul ation, thisbutton
Isdisabled. If avalidinstanceisentered, anew instancewill bemadeabovethe
currently selectedinstance, or at thebottom of thelist if noneissel ected.

Whentheobject concernedisacollectiontype, therearespecia rulesincluded
for positioning the add instances activity. When thewhole set is selected, the
instanceswill beadded at theend of thecurrently sel ected set. If anelement of a
collectiontypeissd ected, aninstancewill beaddedinfront of thesel ectedinstance.
A new collection canbecreated by not sel ecting anything. Theaction of the* add
instancedialog’ will addanew set at theend of thelist.

Add instance dialog

The add instance dialog window lets the user add new instances to the
popul ation of asel ected object. Oftenthe namesof theseinstancesare created
automatically. Theuser hasto enter thechoseninstancesfrom other objectsthat
formthed ementsor rolesof theobjectwhicharebeing currently editing. A newly
createdinstanceisaddedtothepopul ationusingan‘ addto popul ation’ button, or
by pressing enter after enteringthelast column. Theaddinstancedial ogisupdated
automatically whenanew sel ectionismadeinthepopeditor.

| mplementation | ssues
Thepopulationeditor supportsthedevel opment of operational model sby
generatinginstancestotheobjectsdefinedinthemetamode editor. Oncethemeta
model isready, theUpperCA SEtool canbebuiltaroundit, by knowingtheoverall
structureof the CA SE tool and usingtheinterfacetothepopul ationdatabase. There
areseveral important elements; thefirstisdealingwithrepositories. Thesearethe
actual filesthat containthedataof oneproject. Thisdataincludestheabstract meta
models, includingtheir popul ationsamong other data. Therequired CASEtool
must beableto additsdata, suchasgraphicrepresentations, totherepository. It
shoul dalso beableto makeadistinction betweenapopul ated repository (project
file) and an empty one, which can be loaded when a new project is started.
Secondly, the UpperCA SE tools must be able to deal with the populations of
relevant objecttypes,i.e., entity, label, collections, sequences, rel ationshi ps, and
schemas, inthemetamodel , whichactually represent thedesignthatismadeby a
futureuser of theUpperCA SEtoal. Infactthefollowinggroupsof interactionsmust
beperformed by theUpper CA SE tool sbuilt around themetamodel editor:
* Provisonof amechanismleadingtoL oadingand Savingrepositories, carrying
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thecapabilitiesof theStoremechanism
» Usingtheknowledgeof themetamodel tolink therepository totherel evant
partsof the UpperCA SE tool model
* |Interfacingwithpopulation, leadingto Update, Assign, and Query
Wewill firstintroducetheseinteractionsasthey formanimportant part of the
storage and manipulation activities. Thenwewill giveabrief summary of the
Importantissuesconcerninginterfacingtopopul ationsand managing of popul ations.

Loading and saving

TheApplication Controller and Repository Controller objectsareof impor-
tancetoload and saverepositories. The Application Controller providesahigher
level interface which handlesthe opening of therequired object filesand puts
requestersonscreentoask theuser whichrepository they intendtouse. Repository
Controller providestheinternd interfacewhichhandlestheaccesstotherepository,
by keepingalist of open DEDs, andtaking over theopening and creating of the

repository.

Retrieving the meta model structure layout for interfacing
Sincewedecidedtomakeuseof theavailablefacilitiesof theplatformfor data
mani pul ation, thefollowingisconsidered:

» Togetalistof all objectsasthesamekind of themetamodel, onecanobtain
thelistintheformof anl X postingListfromtherepository. Theway todothis
is:

positionList=[repository queryClass. obj _GetClass(“ TheClass’)]
 oraternativelytogetalistof different objects:
positionList=[repository queryClass: [ TheClassclass|]

» simplytoappendadditiona liststotheformerisdoneinthefollowingway:
positionList=[appendL.ist:[repository queryClass.[ OtherClassclasd]]]

Oncethelistsareobtai nedfromtherepository, onecanusethemtoaccessthe
objectsonthedisk. Alternatively, thenameof anobject at acertain positioncan
beobtained. For further understanding of how theindexingkitworks, seeNeX T
Publications.

Editing populations

Therearethreebasi c categoriesof operations, namely del ete, add, andread
for editingpopulations. InPopM anager, PopM anContrM Point, andin PopM anager
Controller, therearemethodsto add or del eteinstances. M ost of theread methods
areparticul ar to PopM anager and PopM anContrM Point, but areaccessibleviathe
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PopManager Controller duetoaforwarding mechanism. Usually theuser interfaces
shouldonly usePopManager Controller toedit popul ations.

Thefunctionality isdistributed acrossthehierarchyinthefollowingway. Atthe
bottom|evel thereisthePopM anager whichistheactua abstract dataobjecttobe
edited. It does some syntactical and semantic checking and basically adds or
deletesinstancesto or fromthepopulation.

Ontopof that laysthe PopM anContrM Point, themai n purposeof whichisto
accessthePopManager, whichmainly residesondisk, by addingthenecessary
functionality needed to handle the database. In addition to that,
PopM anContrM Pointsformtheheart of thenotificationsystem. If any operation
onthepopul ation succeeds, and thereby causesachange, it will senditssubscrib-
ers, usually PopManager Controller, a notification message. Finally
PopM anContrM Pointsdo additional checkingontheparametersthey passonto
thePopM anager anda so provideameansof generatingtheuniqueinstancenames,
incasethey areneeded.

Retrieving data from populations

Thema nmethodfor thisactivity isthemethod, readl nstancesOf Popul ati on:with:
provided by the PopManContrM Point, which can be called directly viathe
PopManager Controller. Theuseof thismethodisrather smple. Furthermore, itis
possibletoretrieveall kindsof datasuchasthenumber of namesinaninstance
(numberOfColumns), the number of instances in the population
(numberOfInstances), check for existenceof aninstancel d (instanceExists), and
the names that can be associated with different columns of instances
(getRowOfIngtance:name).

Inadditiontothistherearemethodsfor gettinginformation about character-
Isticsof theabstract object most notably typeOf Obj ect, getClassName, addPossibl e,
del etePossible, noUniqgueName, popEditTitle, isLable, isGeneralisation, and
ISSpecidisation.

Finally the Id of each of the objectsthat are concerned with handling the
abstract object canberetrieved by themethodsmeetingPoint, PopM anager and
0s0bject, for getting thel d of PopM anContrM Point, PopManager and OS _object,
respectively.

The methodsfor getting uniqueinstance names need alittle explanation.
Whenever theresult of noUniqueNameisNo, theuser interfaceshoul dtakecare
that theinstanceld namethat isadded tothepopul ationisunique. Notethat none
of theobjectsactually check theuniquenessof thenamel d added for performance
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reasons. To do thisthe user interface can perform the generateNexInstName
method to obtai naguaranteed uniquename.

Adding to populations

Themost commonly used method for addinginstancesistheaddl nstance:
method. Thepositionof theinstance, whichisactualy only of real importanceinthe
caseof asequence, isdetermined by theactiveposition and set sel ectionmode,
which can beset using the setActivel nstanceAt: and the setFirstCol Selection:
methods.

Itisalso possibledirectly to passthe position and set modeto the method
addInstance:row:mode: of PopManContrM Point, whichisactually themeth- od
that is called by the PopManager Controller when passing it an addl nstance:
message. Inboth casesall user interfacesarenotified of any changers.

Deleting from populations

Themethodthatisnormally usedfor del etingapopul ationisdel etel nstance
wheretheinstanceat theactivepositionisdel eted or noneif theactivepositionis
-1.Wheninsetmodeandif firstCol SelectionisY ES, thentheentiresetisdel eted,
inall other casesonly oneinstanceisdel eted.

The notification mechanism

Thenotificationsystemisactivatedfor eachoperationthat causesachangein
thepopul ationamong someother events, Theorder of actionmethodsisdescribed
InFigure29. Notethat each actionmethod alsohasareturnvalue, sothereisalso
aninformationflowintheoppositedirectionof theactionmethods. This,infact, has
nothingtodowiththeactual notification. Therearea sosomevariationsonthe
pattern, wherean actionwithin PopManager Controller causesanotificationtobe
sent.

Subscribing and unsubscribing

A few stepsneedtobedonetoget notificationsof changesinthepopul ation
from the PopManager Controller. First of all auser interface object needsto
implement thenotificationmethodsfor thekind of eventsitwantsnotificationfor.
Thesearedefined in PopManNotification protocol. Second the user interface
obj ect needstotel| thePopM anager Controller that itisready toreceivenatification
by sending it a subscribeForNotif: message. To cancel a subscription, the
unsubscribeForNotif: method should beused, wheretheld must bethesameas
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Figure 29: The Notification Path During Normal Operations
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Accessing PopManager directly
Sometimesitissimply unwanted, whileediting thepopul ation, that theuser
Interfacesareupdated continuoudly. Thisisthecasewheneditingalargeamount
of the population at once, for example with the complete population option.
Currently thereisno other way than accessing PopManager directly if onewants
towork aroundthenoatification mechanism. Of courseonecoulda soturnof the
updating of theuser interfaceasan aternative, but oneneedsthePopManager 1d,
tobefetched, sincethemethodsthat arenot supportedin PopManager Controller
or PopManContrMPoint are forwarded automatically to PopManager and
OS _object, respectively. When editing aPopM anager directly, onemust take
certainextraactionsintoaccount, namely:
» EnclosingtheentireoperationwithinanestTransaction/ unnestTransaction
pair
» Savingtheobject back todisk whenfinished
 Notifyingall userinterfacesthat usetheobject of thechange, usualy withan
sendrenewAll or sendRenewAll ToAllInstancesto PopManContrM Point

I nterfacing to populations

Usually theonly object auser or anUpperCA SEtool hastousefor editingthe
popul ationisPopManager Controller. Thisobject hidestheinner structureof the
popul ationediting structureby releasingtheuser fromthetask of callingtheother
relevant objects. By doing this PopManager Controller hidesall disk access,
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includingtransaction schemes, and ensuresconsi stency withinthepopul ation.
Furthermore, PopManager Controller providesanotificationschemetoitsusers
that keepsthemuptodateof any changesinthepopulation. Infact, all usersof the
samePopM anager Controller instanceformalogically grouped set of interfaces.
Theentirenotificationsystemisdesignedinsuchaway that different user interface
objectsneedtocommunicateaslittleasposs blewiththeother interfaceobjects.
Thismakesthedesigning of graphicuser interfacesfor Upper CASE toolsal ot
eas er and consistent. Other rel evant objectsthat areused for editing popul ations
arePopManContrM Point, PopManager,andOS_object. All of theseare, directly
orindirectly, used by PopManager Controller. They canbeaccesseddirectlyinthe
rarecaseitisreally necessary, but most of thetimeusing PopManager Controller
issufficient.

Managing populations

ThePopManager Controller object enabl esseparated user interfacepartsto
handlethe PopM anager. For exampl e, thepop editor and addinstancedia og user
Interfacesaredifferent objectsthat handlethesamePopManager Controller. The
Choose Object window sends the pop editor the message whenever the user
chooses a new object to edit. The pop editor then sends a message to the
PopManager Controller. ThePopM anager Controller notifiesitssubscribers, in
thiscasetheaddinstancedialoguser interface, torenew al methods. Thismeans
that thepop editor doesnot need tonotify theaddinstancedia og of any changes.
Thisisof courseawel comefeature, especia ly whenal ot of different user interface
partsarepresent, sincethecommunication betweentheuser interfaceobjectsis
kept at minimum. Asitispossibletohavemultiplegroupsof interfaces, whichcan
useseveral different PopManager Controllers, itisalsopossibletohaveseveral
PopM anager Controllersthat managethesamePopM anager, asshowninFigure
30. Toavoidincons stencies, andtogivetheautomati cnotificationabigger scope,
theadditional object PopManContrM Pointisintroduced.

Just asuser i nterfacescan havesubscriptionsfor notification on PopM anager
Controllers, PopManager Controllers have subscriptions for notification on
PopManContrMPoints. There is a& most one PopManContrMPoint per
PopManager, whichassuresthat all PopM anager Control lersthat handlethesame
obj ect areconnected to thesame PopM anContrM Point. Sinceall operationson
thePopManager that areperformed by the PopM anager Controller arecarried out
viathePopM anContrM Point, thel atter cannotify al itssubscribers(al PopManager
Controllersthat handl ethat object) of any changes. All together, al groupsof user
interfacesareawayskept uptodate; it doesnot matter whomakesthechange. An
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Figure 30: An Example Arrangement
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exceptionof courseiswhen someobject accessesPopM anager directly fromdisk.
The reason for making a distinction between PopManagers and
PopM anContrM Pointsissimply because PopM anagersarecontained ondisk,
whilePopM anContrM Pointshavecodestoaccessthisdisk, whichobvioudy could
not beputinthePopManager. Theoverall classhierarchy of thepopul ationeditor
IsgiveninFigure31.

THE GRAPHIC EDITOR

Thegraphiceditor (GRAPHICED) isrespons blemainly for theextens onsof
theuser interface. Theimportant architectural issuesthat extendtheobject model
of the CAM E environment arethenext topicof discussion.

Architectural issues
Firstthegraphic_basi sof thegraphicbasemodul eof theCAM E environment
Isextended withanumber of graphicobject types, toformthelibrary of graphic
objects. Thesegraphicobject typescan beassigned totheobj ectstypesof ameta
model. Thegraphicobject typesarethenew graphicrepresentationsthat will be
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Figure 31: Organization of the Population Editor Related Class Tree
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usedinthediagram editor to support specificmodeling techniquesaccordingtothe
requirementsof theproblemsituation. Figure 32 givesan exampleof suchaclass
hierarchy.

Accordingtoour interpretation of view structures, eachmetamodel whichis
of aschematypeisaview of theUpperCASEtools requiredmodelingprimitives.
Theobjecttypesgatheredtogether asaschematypearetheobjectsthat will change
thelr representationstoarriveat therequired diagrammati crepresentation. For this
purpose, firstauser interfaceisdesignedthat all owstheuser to select aspecific
schemafootnote{ Which is a meta model of a modeling technique from the
repository. Onceaschemaissel ected, asecond user interfaceisdesignedto sel ect
thecomponentsof themetamodel andtherequired graphic object types, andto
combinethem. Theedit representationanditsunderlying sel ect representationuser
interfacecarry thisresponsibility. Theeditrepresentationanditsinteractionmodel
withother componentsof the CAME environmentisshowninFigure33.

An UpperCASE tool editor isdesigned so that it has accessto aspecific
schemacapableof creating or opening aspecificdiagramtechnique. Thenameof
thediagramtechniqueisalready storedintherepository, andtheUpperCA SEtool
editor obtains an assigned name. ThisUpperCASE tool editor hasto offer all
functionsthat arenecessary tocreatedatamodel s. Thedraw representationmodule
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Figure 32: Part of the Class Hierarchy of the Graphic Object Library
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Figure 33: Interaction Model of Edit Representation
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Figure 34: Interaction Model of Draw Representation
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associated withthegraphicbasemodul eof the CAM E environment guaranteesthe
accessto UpperCA SEtool editors. Figure34 showstheinteractionmodel of the
draw representation and UpperCA SE tool editor with the rest of the module
structureof theCAM E environment.

GraphicEditors User Interface

Inthissectionweintroduce abrief description of theuser interface of the
graphiceditor. Theitemrepresentation of theMAIN menu givesaccesstothe
componentsof thegraphiceditor. TheM AIN menu, together withrepresentation
submenu, containtheedit representationand draw representationelements.

A singleclick ontheedit representationitemopensanew panel tobrowse
throughtheschematypesthat can besel ected (seeFigure35). Whenthechoiceis
made, anew pand sel ect representati ongppearsimmediately whichallowstheuser
toassigngraphic_objectinstancestoOS_objects.

Figure36 showsthissel ect representationuser interface. Therequiredgraphic
representati on can betyped or sel ected withtheuseof theHel p button. TheHelp
button givesaccessto abrowser (seeFigure37) whichvisualizestheavail able
graphicobjecttypes. TheSavebutton canbeusedtoaddthisrequiredinformation
totherepository, or thebutton Cancel can beused.

When the user’ sattention isrequired until some condition ismet certain
attention panel spop up. For example, if auser triesto alter thegraphi crepresen-
tationof anOS_objectinaschemawhichisbeenusedtodesigndatamodels, an
alert panel will point out thisincident. It preventsthe user from changing the
previoudy storedgraphic_objects, becauseitispossiblethat popul ationsal ready
existwiththat graphicrepresentation. Insuchasituationitisquitenatural todel ete
thedatamodel if required.

Theitemdraw representationgivesaccesstoanew panel toselectaschema;

Figure 35: Edit Representation Panel
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Figure 36: Select Representation
Panel
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Figure38givesanexampleof thispand,
which isatwo-column browser. The
firstcolumn contal nstheschematypes,
and the second column contains the
created datamodel instancesof aspe-
cificschematype. Tocreateanew data
model, firstitsnamehastobeassigned
followed by areturnkey action, which
will automatically openanUpperCASE
tool editor or ssimply adiagram editor
withtheassigned name. Itisal so pos-
sibleto select aname of amodel in-
stancetoopenanexistingdiagramin-
stance. Similarly, Delete and Cancel
buttonscanbeusedif their servicesare
required.

TheUpperCA SEtool isprovided
by diagrameditorwindowscontaininga
titlebar:

<DIAGRAM EDITOR>

/ < Schema type name>/

<Diagram _instance_name>.

Thisdiagram editor offerspossi-
bilitiestosel ect required modelingcon-
ceptsintheappropriategraphicformto
designmode saccordingtoUpperCASE
tool’ sspecifications. Thisselectionis
supportedwithaPop Up List.

Thesealected conceptisassigneda
namebeforeplacingitonthediagram

editor withthehel p of the panel (seeFigure39) containinganinstancebrowser,
whichallowsanew namedinstanceto beassigned or anavail ableinstancetobe
selected. Thisdiagrameditor supports, among other requiredfunctions, deletingas
well asmovinganobjectwithintheeditor.

| mplementation | ssues
Anoverview of theclasshierarchy that capturesthestructureof all added
componentsconcerningthegraphiceditorisgiveninFigure40. Besidestheobjects
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Figure 38: Draw Representation Figure 39: Panel to Enter the Object
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that thisfigureshows, thereareother transient user interfaceobjectswhichare
created and used withinaspecific object. Thesearemainly panelsor browsers,
suchasthebrowser generated withtheHelp button in edit representation. The
object GraphReprepresentsthegraphicobjectlibrary.

Thediagrameditor isawindow wherethemodelingtool isdisplayed. The
object ShowRepsisthecontroller of thediagrameditor. A Draw_areaisaplace
in this window called ShapeView, and each new graphic representation is
consderedtobeasubDraw_area. All Draw_areaswithinawindow arearranged
Inahierarchy, each subareahavingasinglesuper areaandzeroor moresubaress.
A particular Draw_areahasitsown coordinatesystem, expressed asacoordinate
transformation of itssuper area’ scoordinatesystem. A subclassof aDraw_area
iscreated whichimplementsthemouse-event methodto processmouseevents.
Thentheinstanceof thecustom Draw_areaisadded tothewindow hierarchy.
ThesecustomDraw_areasarethesuper classesof thegraphicobjectlibrary.

Atthesametimeasanew graphi crepresentationiscreated, anew element of
thepopulationof theactiveOS_objectisgenerated andtested, todetermineif the
element isavalid member of its population before being added. The active
OS _objectisgivenviathePop UpList of thediagrameditor window.

Thefollowingfunctionsareembeddedintothe ShowRep object:

* thesdlectionandactivationof OS_objects

* thecreationof thenew instancesof theOS_objects

* theassignment of namestographic_objects

* thecreationof instancesof thegraphic_object associatedto OS_object
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Figure 40: Overall Class Hierarchy of the Extra Objects Required for the
Graphic Editor
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 theaddingofthesubdraw_areastothedraw_areahierarchy
* themovingof graphic_objects

* thededetionof graphic_objects

* thedeletionof relatedinstancesof theOS objects

* thesavingof thediagrameditor window intherepository

SUMMARY AND CONCLUSIONS

Thelack of atail orableautomated support at thelevel of informationsystems
analysisand design stageaccordingtoinformation modeling needsof aproblem
Situation continues to pose a considerable challenge to both academics and
practitioners. Thischapter demonstrated how aCAM E environment prototypeis
designedto deal withthissituation. A platformwasdevel opedtotry out atool
constructionprinciple, based onahigh-level specificationof modelingtechniques,
withaneasy-to-usemethod specificationlanguage. Theenvironmentisrepresented
asaconfigurationof serviceobjectsof mgjor functionditiesof informationsystems
analysisanddesignactivities. Thespecificationsof theseserviceobjectsareused
asthearchitectural buildingblocksof the CAME prototype.

Thisprototype, based ontheserviceobject basetheory, demonstratesthat it
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Ispossi bletodevel opanautomated modeling support environment for themethod
engineeringactivitiesrequiredininformationsystemsdes gnwork by mappingthe
serviceobject descriptionontoanavail abl eobject-oriented technol ogy.
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Chapter 3

Future Directions
In CASE Repositories

AjanthaDahanayake
Delft University of Technology, The Netherlands

Today, components and Component Based Development (CBD) isseen
as one of the important events in the evolution of information technology.
Components and CBD offer the promise of a software marketplace where
components may be built, bought, or sold in amanner similar to components
in other industries. In the light of the ongoing developments, in the manner
and art of developing software systems, it isimportant to consider how the
Computer Aided Systems Engineering (CASE) environment that supports
building these systems can be produced on a CBD approach.

In spite of the fact that CA SE environments have been around since the
"70s, there are still many problems with these environments. Among the
problems of CASE environments are the lack of conceptual models to help
understand the technology, the poor state of user requirements specification,
inflexible method, support and complicated integration facilities, which
contribute to the dissatisfaction in CASE users.

During the '90s there has been a growing need to provide amore formal
basisto the art of software development and maintenance through standard-
ized process and product models. The importance of CAME (Computer
Aided Method Engineering) in CASE ledtothedevel opment of CASE shells,
MetaCASE tools, or customizable CA SE environmentsthat wereintended to
overcometheinflexibility of method support. The declining cost of comput-
ing technology and its increasing functionality, specifically in graphic user
Interfaces, hascontributedtothepresent re-invention of CA SE environments.

Previously published in Computer-Aided Method Engineering: Designing CASE Repositories for the
21% Century, edited by Ajantha Dahanayake. Copyright © 2001, Idea Group Publishing.
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CASE research in the last decade has addressed issues such as method
Integration, multipleuser support, multiplerepresentati on paradigms, method
modifiability and evolution, and information retrieval and computation
facilities. Considerable progress has been made by isolating particular issues
and providing a comprehensive solution with certain trade-off on limited
flexibility. The requirement of a fully Component Based architecture for
CASE environments has been not examined properly. The combination of
requirements of flexibility in terms of support for arbitrary modeling tech-
niques, and evolution of the development environment to ever-changing
functionality and applications never the less needs a flexible environment
architectures.

Therefore, the theory formulation and development of a prototype for
designing anext generation of CA SE environmentsisaddressed in thisbook.
A CAME environment isconsi dered asacomponent of aCA SE environment.
A comprehensive solution is sought to the environment problem by paying
attentiontoaconceptual model of such anenvironment that hasbeen designed
toavoidtheconfusionaroundintegrationissues, and to meet the specification
of user requirements concerning a component-based architecture.

A CAME environment providesafully flexibleenvironment for method
specification andintegration, and can be used for information systemsdesign
activities. A large part of this book reports how this theory leads to the
designing of the architecture of such an environment. This final chapter
contains areview of the theory and an assessment of the extent to which its
applicability isupheld.

A REVIEW OF CAME THEORY AND ARCHITECTURE

The concept of CAME as the solution to the issue of supporting
information systems analysis and design work by providing tailorable auto-
mated support according to the information systems modeling needs in a
problem situationisaddressed in thisbook. Theautomated support toolshave
becometheprimary meansof support at thesystemsanalysisand design stage,
and also the automated support tools currently used by information systems
engineerssuch as CASE, UpperCASE, MetaCA SE, or IPSE do not meet the
expectations of the information systems designers. This observation, stimu-
|ated to approachtheissue of amodeling support environment, can betailored
according to arbitrary modeling techniques used for information systems
analysis and design activities.

Theoverall objectivewastofind away tointegratethe conceptual model
of theflexibleinformation modeling environment, that representsthe way of
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modeling and working of information systems modeling techniques, and the
computer aided systems engineering environment technology. Thetheory is
based on the supposition that the service object based conceptual model that
represents the way of modeling and working of information systems design
techniques can provide the architectural building blocks of a tailorable
automated support environment to provide CAME support for design and
generation of modeling techniquesaccordingtotheproblem situations. Based
on this premise a theory was defined for formulating and structuring the
functionality of aninformation systemsanalysisand design environment that
combines the services required according to a problem situation and their
automated supportinaconsistent way. Thetheory |eadsto aconceptual model
of aflexible and tailorable CAME environment through implementation of
the conceptual framework.

Recall that the process of information systems analysis and design is
viewed asthe stages of method engineering of required modeling techniques,
and the analysis and design of the information system using such generated
tools. The method engineering of the required modeling techniquesinvolves
the identification of the required modeling primitives that are required
according to the problem situation, as well asthe design of ameta model of
the desired modeling approach. The resulting meta model constitutes a
conceptual model that describesthe information architecture of the required
modelingtool accordingtotheproblemsituation. Duringthegeneration of the
modelingtools, theinformation architecturesor theidentified building blocks
of the required modeling tools are provided with the required graphic
representationsaccordingtothenotational conventionsof themodelingtools.
This results in an UpperCASE tool or in an automated way of support for
information systems analysis and design activities according to the problem
situation requirements. The actual analysis and design of the information
systemsarchitectureof theproblemareatakesplaceusingthegeneratedtools.
The crux of thistailorable way of support is asfollows.

Chapters 2, 3, and 4 outline the theory that aflexible modeling environ-
ment can berepresented adequately by considering it to be aconfiguration of
service objects of main functionalities of information systems analysis and
design activities.

It has been explained that the functionality of an information system
modeling environment refers to a configuration of main services. This set
provides the required combinations to represent flexible modeling environ-
ments. The services give an indication as to how to specify the boundaries
within which certain functionality can belooked for. Their purposeisto help
in identifying the required functionality of an information system modeling
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environment that can be tailored to the requirements of problem specific
modeling techniques. Therefore, aconfiguration of serviceobjectsrepresents
themain functionality of theinformation systems analysisand design activi-
ties that is required according to the problem situation within flexible
modeling environments.

In Chapter 2 it is shown that it is possible to define a service object
concept that allows the main functionalities of a CAME environment to be
represented. Thecaseexamplereportedin Chapter 3indicatedthat theservice
object based CAME environmentsfunctional description canindeed provide
a good basis to identify the required service objects to fulfill a particular
functionality. Chapter 4 showsthat it ispossibleto define a set of concepts,
constraints, and interactions that allow a sharp distinction between service
objectsto specify theserviceswithin such aserviceobject. The serviceobject
model provesto beauseful instrument for delineating the boundariesand the
services of the solution environment that are required eventually.

Chapter 5 provides a confirmation of the feasibility of a service object
based environment to support design of information architectures of model -
Ing techniquesand generate modeling toolsfor analysisand design activities.
That is, it is possible to devel op an automated method engineering environ-
ment for information systems anaysis and design work by mapping the
service object description onto an available object oriented technology.

The specifications of the architectural building blocks of aflexibleway
of support for information systemsanalysisand design activitiesrevealed the
need for an automated means of support. The feasibility of a service object
based Computer Aided Method Engineering environment for engineering
Information systemsmodeling techniques hasbeen demonstrated. Theproto-
type META-CAME implemented in the NeXTSTEP/Objective C platform
confirmed that the service object based conceptual model isexecutable, such
that flexible modeling support can be realized.

Perhapsthe most important contribution of thiswork isfrom aninforma-
tion systems engineer’ s perspective, aservice object based CAME architec-
tureoffersproblem-specificdesigntool sforinformationsystemsanaysisand
design activities. There were number of test cases conducted to assess the
extent to which this upheld. Thetest cases that were conducted with respect
to this hypothesis can be found in Chapters 6, 7, and 8. In view of the results
obtained in the case studies reported in Chapters 6, 7, and 8, this hypothesis
can not be rgected. The case studies evaluated the extent to which the
environment is flexible according to a problem situation. The design and
generation of information systems analysis and design toolsfor the financial
and administration systems design activities resulted in a modeling support
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that could betail ored according to the problem situation needs of astructured
analysis and design approach. The design and generation of information
systems design tools for the automobile map system resulted in a modeling
support that could be tailored according to the problem situation needs of an
obj ect oriented modeling approach. Thedesi gnand generation of information
systems design tools described yielded a support tailorable to an uncommon
modeling approach and to the identification of shortcomings with respect to
executability of therepresentational aspectsof amodeling approach. Finaly,
thedesign of adatabase and generation of database presentation toolsyielded
support for amodeling approach according to the problem requirements, and
resultedinsupport for representational independenceby providing graphical,
matrix, and tree structures. Those case studies have shownthat itispossible
todefineaset of tightly integrated tool sthat isuseful for defininganintegrated
modeling approach, and that the theory and the supporting technology have
the capability to evolve into full life-cycle support for information systems
devel opment.

CASE OUTLOOK FOR THE 215" CENTURY

Today, businessissuesareglobal in nature; information technology, and
the function it can deliver, isjust another tool in the arsenal to improve and
accomplish more quickly the desired organizational goals. From an organi-
zational context there isthe perceived need for new functionality. Thetime
needed to develop and implement a solution isincreasingly out of step with
the speed at which organizations must respond to, or initiate, change. They
need Information Systems (1S) professionals to design, develop, produce,
distribute, service, and improve product components according to their
demands.

The emergence of novel application areas such as Geographic Informa-
tion Systems, Data\Warehouses, Enterprise Resource Planning, e-commerce,
and the diffusion of advance information technologies such as multimedia,
WAP, and n-tier architectures have necessitated a continuous search for
identifying how they can be assimilated for the benefit of the organization.
The paradigm shiftsto new devel opment approaches--such as Object Orien-
tation, Component Based Development, and incremental approach--have
necessitated a continuous search for new ways to identify how they can
improvethe affectivity and efficiency of systemsdevel opment methodol ogy
in line with the ever-changing business demands.

The information systems development methodology has aways been
unsatisfactory, and over and over it is been evaluated. These evaluations
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resulted that thereisno way to standardize the information systems devel op-
ment methodology, but to allow it to be composed of a modular structure
satisfying the requirements of flexibility, scalability, and reuse (Kumar and
Welke, 1992; Dahanayake, 1997; Tolvanen, 1998). In light of this modular
structure of the methodology and the demand on systems to anticipate
businessevolution, atheory and aconstruction principle of CASE toolsisput
forward for the methodology construction that supports present systems
development activities. The construction of CASE tools based on this
Computer Aided Methodology Engineering theory will support cross-cul-
tural information systems devel opment methodol ogies and will bring about
discipline as well as guidance to solve today’ s systems development chal-
lenges.

M ethod engineering coversall those processes by which an 1 SD method
Is developed, and later customized and instantiated in an organization, in
order to make the method fit the tradition, culture, and infrastructure of the
organization and to meet the specific needs of aparticular project. One of the
major considerations within the Method Engineering is to ensure that a
method forms a coherent and integrated composition, and the structure and
the content of the methods are properly changed during the engineering
process.

Thiscustomized method construction gaveriseto combineand integrate
different methods to satisfy the requirements of flexibility, scalability, and
reuse (Kronlof, 1993; Kumar & Welke, 1992; Goldkhul et al., 1998). A
method with amodular structureis composed of models and techniques that
are integrated by a common phase structure and a compatible set of ap-
proaches and paradigmatic assumptions. Examples of such methods are
Multiview (Wood-Harper et al., 1985), Fusion (Coleman et al., 1994), and
UML (Jacobson et al., 1999) where models and techniques have frequently
been drawn from other methods. Composing a method from components
offers the capability of offering appropriate support for specific tasks.

Relation Between Modeling Methods, Tools and Techniques During
Method Engineering

Techniques [* » Tools

N

Modeling Method
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The Cross-Cultural Modeling Methodology that can Anticipate Business
Evolution

Business M odel

Systems M odel /

The methodology for systems development today encompasses the
construction of the future conceptual model of the business, which must be
related to the (implicit) present conceptual model of the application or
(information) systems model. Information requirement specification is
constructed in the framework of businessmodel and system model. Informa-
tionrequiredfor reaching the solutionisdescribed inthebusinessmodel (e.g.,
workflow, dynamic models, flow-charts, communication models, process
models, etc.). Information available is defined in the system model (e.g.,
entity relationship models, data-flow models, state transition diagrams,
object model s, functional models, dynamic models, etc.) so that the business
model isderivablefromthesystemmodel. Thesetwo modelsareinter- related
and are the two sides of the same coin. The affectivity of the Information
Systems Development approach depends on the corporation and inter-
operability between these two dimensions. Then the | SD approach needs to
customize as well as improve the corporation and inter-operability of the
modeling methods according to these modeling dimensionsto stay in tuned
to these cross-cultural modeling needs.

Themain challenge for information systems design and development in
general isthecontinuouschanging busi nessneedsand theslow andinefficient
anticipation of information system. It isthe thesis of this paper that the lack
of consistency between the business modeling approaches and systems
modeling approaches has to be properly treated and solved in order to
anticipate business needs through systems evolution. The anticipation to
business evolution through systems evolution needs to be treated through a
(modeling) method integration requirement within the design methodol ogy.
Failuresin thisaim cause incoherence and disintegration that in the practice
of information systems development appear as obscurity, mistakes, and
genera inefficiency, or even leads to the avoidance of the methodology.
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The methods fail to support the modeling needs because within the
framework of business modeling and systems modeling, the modeling ap-
proach lacks integration during method construction. The prerequisites that
have to be fulfilled for such an integration of modeling dimensions to be
successful have to be identified and their inherent complexity has to be
considered at early stages of a method construction exercise.

A modular structuregivestheopportunity toinvestigatethecredibility of
amethodol ogy in anticipating the evol ution of information system according
to changing business processes. Also a modular structure creates special
demandsfor integration and consi stency among the componentsof amethod-
ology that promotes evolution of information system according to business
needs. First of all amethodol ogy that anticipatesthe evolution of the systems
has to take into consideration that there are no gaps in support of modeling
relevant features in the domain concern, i.e., the business requirements
modeling and systems requirements modeling have to assure structural
integrity. Second, it should provide smooth guidance to proceed from one
process to another guaranteeing functional integrity. Third, the terminology
related to process, domains, and deliverables has to be compatible.

A customized method construction at the maximum flexibility level is
typically supported by a CAME environment, allowing the design, storage,
retrieval, and assembly of these method components. Thissubstantial degree
of flexibility inthe construction of new methodsrequires, among other items,
integration of methods according to the situation of the project. It is quite
reasonable to think that the modeling approaches are properly integrated
within an effective methodology, but this is not true even for the Unified
Modeling Language (UML) (Jacobson et al., 1999). The integration of
models of different conceptual bases is required to improve the modeling
support required for today’ s fast-changing systems modeling requirements,
andtheway forwardfor such development needscan besuccessfully attained
whenthe CA SE environmentis constructed accordingtothetheory presented
In this book.

CONCLUDING REMARKS

First of al, thiswork has demonstrated the feasibility of abasic CAME
environment. The support environment requirements, which have been
determined for arbitrary modeling technique support according to aproblem
situationin Chapter 4, concentrated on modeling, views, storage and mani pu-
lation, and user interfaces services. The full implementation of storage and
manipulation, and the transaction services were avoided to reduce the
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programming time. When using aCAME environment inreality, ininforma-
tion systems design and devel opment activities, the services such asversion,
distribution, concurrency, and security control servicesmust be supported on
top of the services already specified to provide servicesin adistributed and
multi-user CAME environment. Such an environment can be realized by
concentrating on the theory presented here and extending it with adequate
programming activities. Therealization of afully functional CAME environ-
ment in a CASE that supports the method engineering and full life-cycle
phases of information systems design and devel opment isnot beyond current
capabilities and technologies.

Secondly, many flaws found in current CASE environments are ad-
dressed in this book, which has introduced a basis for common terminology
toallow useful scientificand commercial initiativestotakeplace. Theservice
object based architecture, which separates the conceptual specifications and
therepresentational differences of tools, conveysahighlevel object oriented
application program interface for tool repository interaction. The meta-meta
model of thisenvironment providesflexibility and evolution of the modeling
techniquespecificationanduse, whichisunmatched by any existingMetaCA SE
tool. The novel modeling technique specification and generation mechanism
presented in this book meets the needs of the highly diverse representational
paradigms and the information processing capacity that are demanded from
systems engineering environments. The integrity and consistency of reposi-
tory data during concurrent access by different tools is guaranteed in the
architectural specifications of the environment. In this respect a mgor
paradigmatic revision of how CASE environments are conceived and imple-
mented are provided offering considerable benefits for information systems
engineers with easily adaptable generic services that adequately address
flexible support for information systems design activities.

The third remark is that the method engineering approach of modeling
technique generation has been directed at experienced practitionerswith this
PSM -based meta modeling technique. The affectivity of thetool generation
depends on the practitioners knowledge and experience in meta modeling.
This approach can produce equally effective results when less experienced
practitioners have mastered the art of meta modeling presented in this study.
Learning this technique may take a few weeks for a qualified information
systems engineer. Once the meta modeling technique is understood, the
generation of arequired tool is amatter of afew minutes. The environment
can also be used for the process of |earning the method engineering approach
and its meta modeling technique.
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The fourth remark concernsthe trade-off between the development of a
CAME prototype and acommercial tool. Thiswork focused on arriving at an
adequate prototype to present the theory in areasonable period of time. The
theory described in thisbook was devel oped over aperiod of four years, and
the CAME prototypewasimplemented within atimeperiod of twoyears. The
fine-tuning of theuser interfaceand performancewasnot considered asprime
target. Therefore, adecisionwasmadetoavoidfine-tuning of thetool for high
performance or for ahighly commercial user interface. In the future, one can
use thistheory for the development of afull life-cycle support environment
for information systems development activities.

A concluding remark isthat there remains asubstantial gap between the
designandthedevel opment of information systems. Frequently thereisalack
of guidance in finding the suitable information systems analysis and design
approach that can be used to integratetheresultsinto theinformation systems
development phase. Thisis not due to shortcomings in the modeling tech-
nique generation and use of the theory described in this book. The CAME
environment and the underlying theory provide the basis for tailoring a
support environment according to problem requirements. Consequently the
design of information architectures of modeling techniques and the genera-
tion of modeling techniquesto support information systemsdesign according
to aproblem situation leadsto therealization of atailorableway of modeling
andinformationsystemsdesigning. Thistailorability will alwaysbeobtained
regardless of whether the subsequent design approach is successful. This
tailorable way of automated modeling support will provide an efficient way
of specifying an integrated set of tools in an information systems analysis,
design, and devel opment approach that will increase performanceininforma-
tion systems design and development work.

The primitives of a service object represent the actual environment’s
functionalities, and provide adequate architectural building blocks of infor-
mation systems analysis and design processes to work into a cumulative
tradition of component based CA SE tool development. Obviously, testing
this hypothesis will be an excellent subject for future research.
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Chapter 4

Audit of a CASE Environment

Mario Piatini
Universidad de Cadtilla-LaMancha, Spain
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INTRODUCTION

Thediffusion of CASE tools, along with the ever more pressing problems
surrounding the management of the systems devel opment department, hasmeant
that themesrelated to internal control and audit of aCA SE environment are of
Increasinginteres.

Infact, the high cost of introducing CA SE technology added to the potentia
improvement in productivity and quality have madeit one of the most important
areasfor the Information Systemsauditor.

In this paper wewill deal with some of the questionsthat haveto betaken
Into account when auditing a CA SE environment. Our aimisnot to offer exhaus-
tive checklistsof factorsof influencein thiskind of environment, but rather to
reflect upon somethemesthat have been dealt with throughout intheliterature but
fromadifferent perspectiveto that of theinformation systemsaudit. Inorder todo
thiswewill begin by briefly introducing the basi c concepts of theinformation
systemsaudit, giving abrief explanation of the different methodol ogiesthat are
usedinthisarea. Wewill also analize therisksthat must be taken into account
wheningalingaCASEtool.

Previously published in Managing Information Technology in a Global Economy, edited by Mehdi
Khosrow-Pour. Copyright © 2001, Idea Group Publishing.
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INFORMATION SYSTEMS AUDIT

By theterm “internal control” we understand the policies, proceduresand
normsasawhole, which are established by the management group of acompany
Inorder to carry out itsactivitiesin an orderly and efficient way, safeguarding the
assetsand guaranteeing the completenessand rdliability of itsrecords. Inthefield
of informationtechnology, theaim of theinterna control systemisto guaranteethe
adaptation of the management of the computer assetsand thereliability of the
activitiesof theinformation systems (1 SACF, 1998)

The concept “audit” can bedefined as* the examination of an activity andthe
expressing of anopinion about thequdity of the performanceof an activity, under-
taken by personsindependent of the team responsiblefor the performanceand
supervision of theactivity” (Clark etdl., 1991).

Until afew yearsago thisfunctionwasrelated d most exclusively to thefinan-
cial aspectsand management of the companies; however dueto their ever-in-
creasing automation, the need hasarisen for highly qualified technical personnel
ableto understand therisksthat exist in theautomated environment of information
gystems thesearetheinformation system auditors (Piattini, 2000). Although at the
beginning thisperson wasconsidered asan “ assistant” to thefinance auditor, for
whom he/she prepared programswhich would make certain testseasier to carry
out, nowadaysthey areincreas ngly more autonomous dueto the growing com-
plexity of information systems.

The computer audit can be defined, asaccording to Weber (1999), as“the
process of collecting and eval uating evidenceto determinewhether acomputer
system safeguards assets. Maintainsdataintegrity, alowsorganizational goalsto
be achieved effectively, and usesresourcesefficiently.”

Usudly theinformation system audit isapplied intwo different ways, onthe
one hand the principal areasof the computer department are audited: the exploi-
tation, the management, the devel opment methodol ogy, the operating system, tele-
communications, databases, etc. and on the other hand the applicationsthat work
inthe company areaudited—internally devel oped, sub-contracted or acquired.

Theaudit of the CA SE environment would form apart of the audit of the
development process. Theimportance of the audit of the development environ-
ment arisesfromthefact that it isthe starting point for the execution of the audit of
theapplications.

INFORMATION SYSTEM AUDIT METHODOLOGIES

Although different methodol ogiesexist that can begppliedininformation sys-
tem audit giventhat amost al firmsof auditorsand individua companiesdevelop
their own —these can bedivided into two groups:
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- Traditiond Method: that inwhich theauditor examinestheenvironment withthe
aid of achecklist, whichismade up of aseriesof questionsto be answered.
For example:

| sthereadevel opment methodology? Y N NA

Theauditor must record theresult of hisinvestigation: Y, if theanswer is
affirmative, N, if itisthe contrary, or NA (not applicable)

- Risk Oriented Approach Methodol ogy: asthat proposed by the“Information
System Audit and Control Association” (ISACA), themost prestigiousinter-
national associationinthefield of information system audit. Inthismethodol ogy,
first the control objectivesare established which minimizethe potentia risksto
which theenvironment issubjected.

Referringtotheserisks, thefollowing could be defined asan example:

Control Objective:
The CASE tool must increase the productivity of the development
personnel.

Oncethe control objectives have been established, the specific techniques
corresponding to those objectivesare specified.

Control Technique:
The methodology and procedures for the use of the CASE tool must
be established.

A control objective may have several associated techniques (controls) which
giveit complete cover. Thesemay be of thefollowing types. preventitive, detec-
tive, or corrective.

When controlsexist, tests are designed —known as* compliancetests’ —
which alow the cons stence of these controlsto be verified.

Compliance Teds:
Examine the manuals related to the methodology and the proce-
dures.
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If thesetestsdetect irregularitiesinthe controls, or if thereareno controls, a
further kind of testisdesigned —known as* substantiating risk tests—which alow
theimpact of these deficienciesto be estimated.

Substantiating test:

Check if the applications have been devel oped following the meth-
odology prescribed, by examining the documentation produced by
the CASE tool.

Oncetheresultsof thetests have been evaluated, conclusionsare drawn,
and these are discussed with the personsdirectly responsiblefor the areas af -
fected withtheaim of corroborating theresults. Lastly, theauditor must communi-
cateaseriesof commentsinwhich hedescribesthe situation, therisk that exists,
the defect to be corrected and the recommendations.

Asaresult of theaudit, afinal report will be submitted inwhich the most
important conclusionswhich have been arrived at are presented, aswell asthe
scope of the audit.

Therefore, the auditor must have knowledge of :

- Therisksassociated with CA SE technology, asin order to set the objectivesof
theaudit, it isnecessary to be ableto identify therisks associated with this
technol ogy, eva uating the controlsestablished in order to minimizethem.

- Theareasof theaudit involved, which are principally focused on system devel -
opment.

- Thedifferent categoriesof CASE toolsandtheir principa characteristics(see,
for example, McClure, 1989). Thisisan aspect on which Moeller (1989) in-
ssts. “ System devel opers, usersand auditors must have agood knowledge of
the CASE toolsthat they areusing, including their documentation characteris-
ticsand thelink with the code generators.”

If theauditor isnot familiar with the CA SE tool he/shewill not be ableto
carry out certain verificationsand therefore anindependent expert inthetool would
berequired, although that person were not the auditor.

RISKS OF CASE TECHNOLOGY
As pointed out by Perry (1992), two types of risks associated to CASE
technology exist —thefirstincludestherisksinherent intheingtalation and use of
CASE, andthesecondistherisk involvedin not using CASE.
Infactitisunlikely that an organization that isnot using CA SE technol ogy,
would berigoroudy following amethodol ogy and therefore the auditor should
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control the development of the software. Moreover, theauditor should reflect this
factin hisfinal comments, astheabsenceof CASE will impedeimprovementin
productivity and quaity of the devel opment, will increase maintenance cost, and
therisk may exist of |osing the most competent members of staff (asthey may
leave the company in order to keep up to date)

Inreferenceto therisksinvolvedintheinstallation of CASE technology,
thesecan beandized asthey ariseduring itsinstallation or itsdaily use.

RisksDuringthelnstallation
Theauditor must control thefollowing aspectsduring theinstallation:

- Thesdection process should be carried out in accordance with the procedures
already existing in the company (see, for example, 1SO). Inthisprocess, itis
important (or even essentiad) totakeinto account thelevel of maturity of develop-
ment of the company in order to select the most appropriate CASE tool for it.
Another important aspect inthe selectionisthat the auditor should be consulted
about what audit facilitiesthe CASE tool should have, and these should beborne
inmindinthesdection.

- Theprestigeand solvency of themanufacturer and distributer. They should be
ableto provide sufficient support.

- Thetermsof the contract (see Perry, 1983)

- Atraining program should be established and carried out as planned.

- Aningdlation planisproposed and thisis approved by the management mem-
ber responsiblefor thisarea.

- Thenew postsand responsibilities created by the CA SE technology must be
defined.

- If apilot project iscarried out, its devel opment must befollowed.

- Intheconversion of asystemto the new tools, the auditor must ensurethat the
necessary controlshavebeen carried out in order to guaranteetheintegrity of
theinformationrelated to the system.

RisksArising During Use
Oncethetoolshavebeeningtalled, the auditor must be careful to ensurethat:

- Thetoolsareunder constant eval uation, in order to check that they have adapted
aswell aspossibleto the company and that they are being used to their full
potential. Itisalso necessary to ensurethat the procedures established are
being carried out correctly and their cost-effectiveness

- TheCASEtoolsareintegrated with therest of the softwarein the company

- Theintegrity of thedatatransferred between CASE productsor processmanuas
andthe CASE toal iscontrolled and maintained.
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- Theproceduresof confidentiality arerespected. When part of theinformation
that before was kept on paper is substituted by information stored inthere-
pository of thetool, thisaspect may be neglected. It will be necessary to ensure
that thedesignsareonly modified by authorized persons, leaving only cluesthat
allow independent inspection by theinterna control or the auditor.

- Strict control iskept of versionsinthedictionary or repository

- Theresultsof theingtalation of CA SE technol ogy must be measured quantita:
tively.

- The CASE tool isbeing used in those applicationswhereitsuseisclearly
benefica

- Thechangesundergone by the applicationsarereflected inthe CASE tool

CONCLUSIONS

Thegreat influencethat CA SE technology has on the devel opment environ-
ment, hasacons derable effect on thework of theauditor. Thispower of automa-
tion changesthenature of the devel opment process, €liminating or combining some
stepsand atering the meansof verification of the specificationsand applications.
Theauditor needsto recognize the changesin the devel opment process caused by
the CASE. A clear example of these changes could bethe automati c generation of
thecodefromdiagrams.

We have briefly summed up the principal aspectsrelated totheinformation
system audit, all of which can be appliedinageneral way to both internal and
external audits, bearing in mind the essence and periodicity of each.

L astly, we should emphasizethat CA SE toolscan be of helptotheauditor in
hiswork asthey storealarge quantity of information about how the applications
have been designed and therefore theinformation system auditor should under-
stand the new focusfor the devel opment of systems, such as CASE, and theway
Inwhich documentation isconstructed.

REFERENCES

Clark, R et a. (Ed.). (1991). The Security, Audit and Control of Databases.
Aldershot, UK: Avebury Technicdl.

| SACF. (1998). Control Objectivesfor Information and Related Technol ogy.
Thelnformation System Audit and Control Foundation, Illinois, EEUU.

1SO. (1995). Guidelinefor the evaluation and selection of CASE tools. | SO/
IEC1S14102. Geneve. Internationa Standarization for Organization.

McClure, C. (1989). CASE is software automation. Englewood Cliffs, NJ:
PrenticeHall.

Modler, R.R. (1989). Computer, Audit, Control and Security. New York, EEUU,
JohnWiley & Sons.



Piattini & Garcia-Tomas 75

Perry, W.E. (1991). Ensuring the Integrity of the Data Base. Auerbach Pub-
lishers, Warren, Gorham & Lamont.

Piattini, M. (Ed.). (2000). Auditing Information Systems. Hershey, PA: Idea
Group Publishing.

Weber, R. (1999). Information Systems Control and Audit. Upper SaddleRiver,
NJ: PrenticeHall.



76 Process Model for Round-trip Engineering with Relational Database

Chapter 5

Process M odel for Round-trip
Engineering with Relational
Database

Leszek A. Maciaszek
MacquarieUniversity, Austrdia

Iterative and incremental development of client/server database systems
requires a round-trip engineering support, in particular in a design-
implementation cycle. This paper identifies some more difficult round-trip
engineering scenariosand defines processes needed to handle those scenarios.
The processes conform to the current state-of-the-practice in forward and
rever se engineering with relational databases.

The paper identifieslimitations of a tool-driven round-trip engineering. The
limitations can be linked to three reasons: (1) the inability of a CASE/4GL
tool to always generate correct incremental code after schema has been
changed, (2) the need for a CASE/4AGL to under stand the rever se-engineered
procedural partswritten (or modified) in the implementation phase, (3) the
requirement that a database content (extension) be re-instated at the end of
each design-implementation cycle.

Technical limitations introduce a risk that design models and a database
implementation become misaligned and the design-implementation cycle
cannot be continued for iterative and incremental software production. Project
manager s need a process model to impose necessary rigour on design and
programming teams to alleviate technical restrictions. The paper defines a
project management strategy that enforces appropriate automated and
manual processes on database devel opment teams.

Previously published in Challenges of Information Technology Management in the 21% Century, edited
by Mehdi Khosrow-Pour. Copyright © 2000, Idea Group Publishing.
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INTRODUCTION

M odern software devel opment processesareinvariably incrementa anditera-
tive. System modelsarerefined and transformed through analysis, design and
implementation phases—detail sare added in successiveiterations, changes and
Improvementsareintroduced as needed, and incremental rel eases of software
modulesmaintain user satisfaction and provideimportant feedback to modules
gtill under development. AsRational Unified Processstates. “ Aniterative process
Isonethat involves managing astream of executablereleases. Anincremental
processisonethat involvesthe continuousintegration of the system'sarchitecture
to producetheserel eases, with each new rel ease embodying incremental improve-
mentsover theother” (Booch et al., 1999, p.33).

Iterativeand incremental processes need astrong round-trip engineering sup-
port between adjacent devel opment phases. Thisisparticularly truefor lower
enginearing processes—design and programming phases. Changesindesgnmodds
haveto beforward-engineered to existing implementation and changesinimple-
mentation haveto bereverse-engineered to design models.

Inthis paper, we determinethe limitations of commercia automation to sup-
port round-trip engineering between adatabase design model and anincremen-
tally implemented relationd database. Weidentify variousincrementa changesto
design and implementation, and we show how they can beround-trip-engineered.
The changesinclude declarative and procedural aspects of database intention
(schema). Werequirethat round-trip engineering is constrained by the database
extension, i.e,, thelatest database content must bere-instated in anew database.
We define processesthat have to beimposed on the design and programming
teams so that round-tri p-engineering can be properly managed. The process man-
agement aspect can beenhanced if achangemonitoring systemisimplementedin
thedatabaseandif itisitself asubject of round-trip engineering (so that arecord
of design and implementation changes, still subject to round-trip engineering, is
kept current at al times).

BACKGROUND AND RELATED WORK

The objective of round-trip engineering isto support evol utionary devel op-
ment of software systems. Theterm wascoined, | think, by Grady Booch who
definesit ascombining of forward code generation and reverse engineering that
gives"...theahility towork inether agraphical or textua view, whiletoolskeep
thetwo viewsconsistent.” (Booch et al., 1999, p.16).

Round-trip engineeringisconcerned with an evol utionary development of new
systemsand it therefore differsfrom re-engineering which examinesand dtersa
legacy systemtorecover itsdesign and re-implement itinanew form. Neverthe-
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less, round-trip engineering sharesthetechnol ogiesof re-engineering (Olsen, 1998;
Watersand Chikofsky, 1994), such as:

 forwardengineering

* reverseenginesring

* redocumentation from sourcecode

* restructuringof programlogic

* retargetting the systemtoamodern platform

* sourcecodetrand ation to another language

« datare-engineering (asopposed to processre-engineering)

Thereisalargebody of literature on re-engineering. Theworking “blueprint”
for how to usere-engineering for cost- and time-effective systemsintegrationis
givenin Mischke (1998). Other mgjor source of information on re-engineeringis
Arnold (1993). A processmethodology for planning and implementing incremen-
tal re-engineering fromlegacy systemsisdescribedin Olsem (1998). Systemsre-
engineering patternsare discussed in Stevensand Pooley (1998).

Forward engineering with visua modeling toolsisdiscussed in any mgor text-
book on software engineering and on systemsanalysisand design. Researchis-
sueswith regard to both forward and reverse engineering are extensively pre-
sented inthe Proceedingsof |EEE Computer Society's International Conferences
on Software Engineering (I CSE conferences, with morethan twenty yearshis-
tory). Thereare also specialized conferences on reverse engineering by |EEE
Computer Society - Working Conferenceson Reverse Engineering (WCRE con-
ferences, with fiveyearshistory).

Failuresof Computer-Aided Software Engineering (CASE) toolsto deliver
promised benefits, and thereasonsfor thesefailures, are documented in Jarzabek
and Huang (1998). Desired capabilities of reverse-engineering tool sare described
in Jarzabek and Wang (1998). These two papers emphasi ze the need for pro-
cess-centric (rather than method-centric) CA SE frameworks. Other contribu-
tionsto process-oriented softwareengineering include Ambriolaet d. (1997) and
Greenwood et a. (1996).

Re-engineering and reverse engineering can benefit from artificia intelligence
technigues and from construction of knowledge basesto assist in program and
database understanding. Early work inthisareaisreported in Kozaczynski and
Ning (1989). Toal requirementsfor databasereverseengineering areidentifiedin
Hainaut et a. (1996). Database design recovery asanintegral part of aniterative
and incremental software productionisdiscussed in Kozaczynski and Maciaszek
(1990). An approach to reasoning with fuzzy netsfor reverse engineering from
databasesispresented in Jahnkeet a. (1997).
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Thischapter buildson thisextensive body of research resultsand on the capa-
bilitiesof current technology. The motivationsfor the chapter, andits potential
contributions, are based on thefollowing requirements:

1. iterativeand incremental devel opment pre-supposesthat the design documen-
tation reflectsthe current state of the databaseimplementationat al times(or at
least at some pre-specified “ synchronization” times),

2. reverse engineering toolsidentify and model therecovered desgnwith all de-
talls(ascurrently implemented),

3. forward engineering toolsre-ingtatefully the database extension after changes
todesgnmodels,

4. round-trip engineering appliesto both dataand procedura partsof adatabase.

ROUND-TRIP-ENGINEERING SCENARIOS

Round-trip-engineering with the database involves a Physical DataModel
(PDM) at the design end, and a Database (DB) at theimplementation end. A
PDM model isavariant of aphysical Entity-Relationship (ER) model. In our
experiments, we used the representation supported by acommercial CASE tool -
PowerDesigner DataArchitect (version 6.1) from Powersoft. PowerDesigner was
asousedinall forward and reverse engineering activitieswith the DB (managed
by Sybase System 11).

Figure 1 providesahigh-level statemodel for round-trip engineering with da-
tabase. Themodd uses State Trangtion Diagrams(STD) of the Unified Modeing
Language (UML) (the diagram has been prepared with Rational Rose CASE

Figure 1. Sate transition diagram for round-trip engineering with

archive load
Initial PDM | create " Initial DB
modify modify
archive/x re—Ioad/X
( synchronize (

Current PDM Current DB

populate
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tool). After the PDM model iscongtructed (Initial PDM state), it can bearchived
(archive event) so that the future changesto the model (modify event) can be
recognized by the CA SE tool through comparisonswith the archived PDM. For-
ward engineering of the PDM tothelnitial DB istriggered by the createevent. A
DB extensioniscreated asaresult of load event. A modify event on Initial DB
causesadatabasetransition to Current DB state. At thisstage, two possibilities
exist: changesto Current PDM haveto be synchronized with Current DB (syn-
chronizeevent) or viceversa- changesto Current DB haveto be popul ated back
to Current PDM (populate event). Eventually, Current PDM may need to be
archived and Current DB may need to bere-loaded.

Therest of thissectionisorganizedin six "'change scenarios'. Each scenariois
discussed inthefollowing points:
» categoriesof changesthat fall inthescenario,
* theprocessof theautomated forward and/or reverse engineering,
o example,
* limitationsand conclusons.

I n the scenario descriptions, the acronym FE standsfor Forward Engineering
and RE - for Reverse Engineering.

Scenario 1- FE of relatively straightforwar d schemaadditions
Categories of changes:
 Additionof anull-alowing columntoatable
» Additionof atable
 Addition of auser datatype

Figure 2. Intention of T_Employee

T_Employee
emp_id <pk> char(3) not null
first_name varchar(20) not null
middle_initial char(1) null
family_name varchar(40) not null
phone varchar(8) null
commence_date smalldatetime  null
terminate_date smalldatetime  null

Figure 3. T_Employee with added null-allowing column

T _Employee
emp_id <pk> char(3) not null
first_name varchar(20) not null
middle_initial char(1) null
family_name varchar(40) not null
birth_date smalldatetime  null
phone varchar(8) null
commence_date smalldatetime  null
terminate_date smalldatetime  null
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 Additionof aview definition
Theprocess:

» ArchivePDM

» Addanew object (e.g. atable) to PDM

» Generate SQL database modification script

» Executethescript on DB (ie. synchronize DB)

» ArchivePDM

Example 1 — addition of a null-allowing column to a table:

» Supposethat thefollowingtable (Fig.2) hasbeen archivedin PDM and the
extension of thetableexistsin DB.

* New column (birth_date) added (Fig.3) in PDM.

» Modify Database script generated (dlter table...) in PDM.

dtertableT_Employee
addbirth_datesmalldatetimenull
go

 Thescript executed on DB - tableintention modified and the extension of the
tablerestored.

Example 2 — addition of a table:

» Supposethat the previousaddition of acolumn hasbeen archivedin PDM.

* New tablesaddedin PDM.

» Modify Database script generated in PDM and executed on DB. The DB con-
sistsnow of threetableswith fiverelationshipsand anumber of triggersto
support referentia integrity. Theextensonof T_Employeeremainsintact.

Limitations and conclusions:
 Althoughtheexisting DB content remainsintact, it may not be correct. Thisis

Figure4: T_Task and T_Event tables added to the schema.

T_Task emp_id = created_emp_id
task_id <pk> numeric(6) identity [o,n] upd(R); del(R)
contact_name varchar(40) not null
created_dt smalldatetime  not null
created_emp_id <fk> char(3) not null
descr varchar(60) not null T_Employee
value smallmoney null emp_id <pk> char(3) not null
first_name varchar(20) not null
middle_initial char(1) null
family_name varchar(40) not null
task_id = task_id birth_date smalldatetime  not null
upd(R); del(C) phone varchar(8) null
[O’F] commence_date smalldatetime  null
terminate_date smalldatetime  null
T_Event
event_id <pk> numeric(6) identity
task_id <fk> numeric(6) notnull | [o.n]
event_type tinyint not null emp_id = created_emp_id
descr varchar(60) null upd(R); del(R)
priority char(1) null
created_dt smalldatetime  not null o]
created_emp_id <fk> char(3) not null ! emp_id = due_emp_id
due_dt smalldatetime  not null upd(R); del(R)
due_emp_id <fk> char(3) not null
completed_dt smalldatetime  null
completed_emp_id <fk> char(3) null [o.n]

emp_id = completed_emp_id
upd(R); del(R)
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becausethe new integrity constraints, whether declarative or procedural, will
not validate existing data.

Popul ating new columnswith datausing SQL Update command may be more
troublesomethan re-loading the entiretablewith SQL Insert command (or with
aDB Load utility).

New columnsincludeany foreign key columns created automatically in PDM
to enforcereferentid integrity between existing and new tables. However, for-
eignkey columnscan only beadded in Scenario 1if they canaccept null va ues.
Otherwise, Scenario 2 applies.

Therecomended processisthat PDM designers modify the database, archive
PDM andinform DB programmers about the recommended waysto re-popu-
|ate the database (as per risksand problemslisted above).

Scenario 2 - FE of moreproblematic schemaadditions
Categories of changes:
Additionof not-null columnto atable (with or without the default valuefor the
column).
Addition of areferentia integrity that requiresanot-null foreignkey inan exist-
ingtable.
Theprocess:
Adding anew columnto atablein PDM and generating M odify Database

script will not work (see Example below). For thisreason, the FE processismore
complex:

Cut (remove) thetablethat requiresnew column(s) from PDM.

In PDM, modify any invalidated indexes on foreign keysthat pointed to the
primary key of thetablejust removed.

ArchivePDM.

Paste the table back to PDM and re-establish foreign keysand indexes.
Addanot-null column.

Generate SQL database modification script.

Executethe script on the database.

Figure 5: Not-null birth_date column added to T_Employee.

T _Employee
emp_id <pk> char(3) not null
first_name varchar(20) not null
middle_initial char(1) null
family_name varchar(40) not null
birth_date smalldatetime  not null
phone varchar(8) null
commence_date smalldatetime  null
terminate_date smalldatetime  null




Maciaszek 83

Re-insert the datainto there-created (ie. dropped and created) table.
ArchivePDM.

Example — addition of a not-null column to a table:

InPDM, theNOT NULL birth_datecolumnaddedto T_Employeetable (Fig-
ureb).
M odify Database script can be generated in PDM, but — as expected — does
not execute on DB. Notethat the setting of adefault valueon birth_datewould
not eiminatethe server error (seebelow).

dtertableT_Employee

add birth_date smalldatetime default '1-JAN-80' not null

g0

Server Message: Number 4901, Severity 16

ALTER TABLE only alows columnsto be added which can contain nulls.
Column'birth_date' cannot be added totable T _Employee' becauseit does
not alow nulls.

» Theabove meansthat thetable hasto be dropped (PDM and DB), re-created
(FE) and datare-inserted with new insert scripts(DB). Note, however, that the
indexes haveto berepaired manually in PDM. Otherwise, the Modify Data-
base script will not generate, asshown here:

Error: Thefollowing indexesdo not have any columns:
->|ndex "IND_FK_TASK_CRTEMPID"
(IND_FK_TASK_CRTEMPID) of thetable"T_Task" (T_TASK)
->|ndex"IND_FK_EVENT_CRTEMPID"
(IND_FK_EVENT_CRTEMPID) of thetable"T_Event" (T_EVENT)
->|ndex"IND_FK_EVENT_DUEEMPID"
(IND_FK_EVENT_DUEEMPID) of thetable"T_Event" (T_EVENT)
->|ndex"IND_FK_EVENT_CMPEMPID"
(IND_FK_EVENT_CMPEMPID) of thetable"T_Event" (T_EVENT)
Result: 4 error(s).

Limitations and conclusions:
 Dropping atablewiththe primary key pointed to from other tablesbreaksthe
referentia integrity of the database. Therestoration of thisintegrity isnot guar-
anteed when thetableisre-created and datare-inserted. Thisisbecausethe
integrity isverifiedwhenforeignkeysareinsertedinchild" tables, not whenthe
primary keysareinsertedin " parent” table.
» Theaboverisk canbedleviated by first deleting therecordsfrom thetableand
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then dropping it. The Delete action causes appropriatetriggerstofireandre-
quiresremedial actionson child tables- thusallowing to drop thetablelater in
asafemanner.

» Changesin Scenario 2 aretroublesome and require aclose cooperation be-
tween PDM designersand DB programmers. The FE processmust conformto
the sequence of eventslisted above.

Scenario 3- FE of additional businessruleson schema
Categories of changes:
 Addition of declarative businessrules(such asdataentry vaidation).
 Additionof procedura businessrulesimplementedintriggers.
Theprocess:
» ArchivePDM.
* InPDM, set new businessruleson columns, datatypes, or tables.
» Generate SQL database modification script.
» Executethescript on DB.
» ArchivePDM.
Example — addition of non-modifiability on a column and making the
column values conform to an entry pattern:
* Themode ismodifiedin PDM so that columnbirth _date must not be modifi-
able and phone must conformto the pattern: "9457[0-9][0-9][0-9][0-9]".
» Generate and execute SQL database modification script. Theruleon phone
generatesacheck constraint, but theruleonbirth_daterequiresatrigger.
createtable T_Employee

(
emp_id char(3) not null,
fird_name varchar(20)  notnull,
midde initid  char(1) null

famly name varchar(40)  notnull,
birth_date sndldaetime default‘ 1-JAN-80" not null,
phone varchar(8) nul
constraint CKC_PHONE_T_EMPLOY check
(phonelike"9457[0-9][0-9][0-9][0-9]"),
commence date sandldaetimenull
terminate date smdldaetimenull
constraint PK_T_EMPLOY EE primary key (emp_id)
)

[* Updatetrigger "tu_t_employee” fortable"T_Employee" */
createtrigger tu_t employeeonT_Employeefor update as



Maciaszek 85

Figure 6: Schema after RE to a new PDM.

T_Task
task_id <pk> numeric(6) identity emp_id = created_emp_id
contact_name varchar(40) not null upd(R); del(R)
created_dt smalldatetime  not null (on]
created_emp_id <fk> char(3) not null
descr varchar(60) not null
value smallmoney null
T_Employee
emp_id <pk> char(3) not null
first_name varchar(20) not null
middle_initial char(1) null
family_name varchar(40) not null
birth_date smalldatetime  not null
phone varchar(8) null
T_Event commence_date smalldatetime  null
event_id <pk> numeric(6) identity terminate_date smalldatetime  null
task_id numeric(6) not null
event_type tinyint not null
descr varchar(60) null — [O'nlemp_id = created_emp. id
priority char(1) null Upd(R); del(R)
created_dt smalldatetime  not null [0.n] !
created_emp_id <fk> char(3) not null ’ emp_id = due_emp_id
due_dt smalldatetime  not null upd(R); del(R)
due_emp_id <fk> char(3) not null
completed_dt smalldatetime  null [on emp_id = completed_emp_id
completed_emp_id <fk> char(3) null upd(R); del(R)

begin

declare
@maxcardint,
@numrowsint,
@numnull int,
@errnoint,
@errmsg varchar(255)

select @numrows= @@rowcount
If @numrows=0

return

/* Non modifiable column"birth _date" cannot be modified*/
If update(birth_date)
If exists(select 1
frominserted |, deleted d
wherei.birth_date!=d.birth_date)
begin
select @errno = 30001,
@errmsg ="‘Column"birth_date" cannot bemodified.’
Goto error
end
return
[* Errorshandling*/
eror:
raiserror @errno @errmsy



86 Process Model for Round-trip Engineering with Relational Database

Figure 7: PDM after RE.

T_Employee
emp_id = due_emp_id emp_id <pk> char(3] not null
emp_id = created_emp_id first_name varchar(20) not null
emp_id = completed_emp_id middle_initial char(1) null emp_id = created_emp_id
upd(R); del(R) family_name varchar(40) not null upd(R); del(R)
birth_date smalldatetime  not null
phone varchar(8) null
commence_date smalldatetime  null
terminate_date smalldatetime  null
5 IND_PK_EMP

[o,n]
[0,n]

T_Event
event id <pk> numeric(6 identity
task_id <fk>  numeric(6) not null
event_type tinyint not null T Task
oty e taskCid <plo numeric(s) _ identty
created_dt smalldatetime  not null contact_name varchar(40) not nul
created_emp d <k char(3) not null created_dt smalldatetime  not null
due dt7 - smalldatetime  not nul [o.n] p~ Created_emp_id <fk>  char(3) not null
due_emp id <fk> char(3) not null task_id = task_id descr varchar(60) not null
completed_dt smalldatetime  null upd(R); del(R) value smalimoney  null
completed_emp_id <fk> char(3) null £5 IND_PK_TASK
] IND_PK_EVENT 5 IND_FK_TASK_CRTEMPID
F IND_FK_EVENT_CMPEMPID
7 IND_FK_EVENT_CRTEMPID
£ IND_FK_EVENT_DUEEMPID
£ IND_FK_EVENT_TASKID

rollback transaction

end

m .

commit

Qo

Limitations and conclusions:

» Newly generated databaserulesand triggersdo not validate the prior database
content.

» Therecommended processisthat PDM designers modify PDM and DB (with
aprior warning givento DB programmers).

Scenario 4 - FE and then RE toanew PDM
Categories of changes:

» No changes, just FE toanew DB followed by RE to anew PDM.
Theprocess.

* InPDM, forward-engineer toanew DB.

* InPDM, reverse-engineer fromaDB.

* ArchivePDM.

Example — RE to a new PDM:

« RET Employee, T_Eventand T_task tables.

» Reversed-engineered graphical result in PDM isincomplete (Figure6). The
relationshipbetween T _Eventand T_Task “vanished” (cp. Figure4) because
the CASCADE DEL ETE congtraint intheoriginal PDM wasimplemented in
DB procedurally through atrigger rather than declaratively (however, thetrig-
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ger itself isreverse-engineered, asexpected —ref. Scenario 6).

Limitations and conclusions:

RE createsachallengefor aCA SE tool and thereverse-engineered PDM may
contain someflaws. Theflawsof agraphical nature can berectified, but the
flawsintherepository can bedifficult to correct.

Thisscenario hasonly theoretical significance. In practice, RE needsto be
conducted after changes have been madeto the DB intention.

Scenario 5- RE toanew PDM after some
changesmadein DB intention
Categories of changes:
Primary key (PK) and foreign key (FK) indexes specified on DB tables.
System proceduresto enforce PK and FK (sp_primarykey & sp_foreignkey)
specifiedon DB (but dl referentid integrity congtraintsimplemented procedur-
dly throughtriggers).
Theprocess.
In DB, make necessary changes.
In PDM, reverse-engineer themodified DB objects.
Archive PDM.
Example — RE to a new PDM after changes made to DB:
RET _Employee, T_Eventand T_task tables(ref. theorigind PDM inFigure
4).
Changes made by the programmerson DB:
PK and FK indexes created.
Referentia integrity congtraints specified additionally through sp_primarykey
and sp_foreignkey procedures (so that the rel ationships can bere-constructed
INRE).
RE graphica result (Figure7):
Theindexesre-engineered properly but somerelationships have not beenre-
constructed correctly - the CASCADE DELETE (del(c)) constraint between
T Eventand T_Task changed to RESTRICT DELETE (del(r)), and thethree
relationshipsbetween T_Eventand T_Employeere-engineered asonly one
relationship.
Unlessthe above problemsare corrected manually, aconflict existsin DB be-
tween declarative constraints (implemented through sp_primarykey and
sp_foreignkey procedures) and procedural constraints (implemented in trig-
gers).
Limitations and conclusions:
As before, RE creates a challenge for a CASE/4AGL tool and the reverse-
engineered PDM may contain someflaws. Theflawsof agraphical naturecan
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berectified, but theflawsin therepository create serious problems.

* Indexescannot bereverse-engineered onindividual basis- theentiretable
would haveto bereverse-engineered.

» Therecommended processisthat DB programmers modify the database and
re-load the data. All changes are well-documented and passed to PDM de-
sgnerswho then conduct asdlective RE at aspecified synchronizationtime.

Scenario 6 - RE of trigger sand stored procedurestoa PDM
Categories of changes:
» Triggersmodifiedin DB.
» Stored procedurescreated or modifiedin DB.
Theprocess:

» InDB, makenecessary changes.

* InPDM, reverse-engineer themodified DB objects..

» ArchivePDM.

Example — RE of a modified trigger:

* InDB,td t_task trigger modified so that rollback transaction hasbeen changed
torollback trigger with raiseerror.

» Thetriggerisreverse-engineered from DB and it replacesthe previoustrigger
inPDM. Thetrigger isthen marked asUser-Definedin PDM, so that it can be
forward-engineer without changes.

Limitationsand conclusions.

» ThisREtoo createsachallengefor aCASE/4GL tool and thereverse-engi-
neered PDM may contain someflaws.

* A careshould betaken so that thetriggers once modified in DB are not auto-

Figure 8: Sequence diagram for the process model.

‘PDM Version 1

‘DB Number 1 :

[PDM Version 2 | ‘DB Number 2 | [PDM Version 3

archive loadDB
modifySchema&Triggerg:l m:
- - 7

‘modify&re-loadchanges
<

PDM DB PDM | DB | | .PDM
‘ genSchema&Triggers ‘ ‘ ‘ ‘
archive
D:l loadDB ‘ ‘ ‘
modifySchema&Triggers ‘ ‘ ‘ ‘
modify&re-loadChanges ‘
B | | |
saw&archive
|
programSP&modify Triggers ‘ ‘ ‘
Pass record
of changes to — reverseChanges ‘ ‘ ‘
f — S
designer markChangesUnmaodifiable and/or changeGenTemplates ‘
e |

‘
sawe&archive
I

—

| |

‘ ‘ genSchema&Triggers&SP
‘ |

‘  — Etc. AN
|
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maticaly re-generated later in FE activities. Thesetriggerscan only bemodified
inDB, notin PDM (they need to be marked as User-Defined).

Alternatively, if the scripting language of the CASE tool allowsto* program”
the modificationin thetemplatesused to generate thetriggers, then the change
can beautomatically affected in each FE action.

Limitations and conclusions:

DB programmers modify the database and re-load the data. All changesare
well-documented and passed to PDM designerswho then conduct aselective
RE at aspecified” synchronization” time.

Thereverse-engineered triggersare marked as not modifiablein PDM or the
generation templatesarere-programmed.”

Sinceinpractice, inlarge-scale database systems, thereferential integrity is
implemented procedurally, the changes conforming to thisscenario can heavily
limit thereverseengineering activities.

Notealsothat in some DBM S-s(e.g., Sybase), only DELETE RESTRICT
and UPDATE RESTRICT can beimplemented declaratively. In such systems,
other options (CASCADE, SET NULL, and SET DEFAULT) haveto be
implemented procedurdly.

PROCESS MODEL

Theround-trip engineering process should takeinto consideration that:
ThePDM mode can bearchived and versioned by aCA SE tool, but atypical
relational DB doesnot haveabuilt-in capability to maintain DB versons(other
than by creatinganew DB).

After initial generation of DB, the need for changesto PDM isfrequently "dis-
covered” during programming; therefore, programmersshould beableto modify

DB asneeded aslong asthe modificationsare popul ated back to current PDM.
Thepopulate event (ref. Figure 1) should bedonein bulk at specific synchroni-
zationtimesand PDM should bethen archived.

Any later changesto thearchived PDM that need to be synchronized with DB,
should beforward engineered to anew DB instance.

Figure 8 representsaUML sequencediagram for the round-trip engineering
process model. The diagram shows three PDM object instances and two DB
object instances.

First, in Design Phase 1, aPDM model iscreated (PDM Version 1) so that
SQL scripts can be generated to create database schemaand triggersinaDB
(DB Number 1). PDM Version 1 isthen archived, and DB Number 1 can be

|oaded with data.

Aslong as DB programmers (in Programming Phase 1) do not modify data-
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baseintention, designers(still in Design Phase 1) can modify schemaand triggers
in PDM, and can generate new SQL scripts to modify database schema and
triggersaswell asto re-load the database following the modifications. At this
point,aPDM model should be saved and archived in PDM Version 2.

Because PDM and DB arenow in unison, DB programmers can begivena
period of time (Programming Phase 2) for unconstrained development, including
programming of stored procedures and making changesto triggersand to data-
baseintention. However, dl such changesmust be carefully documented and passed
to designersat the end of Programming Phase 2 (and the beginning of Design
Phase 2).

In Design Phase 2, the unconstrained programming is suspended and pro-
gramming changes arereverse-engineered to PDM Version 2. Changesto trig-
gersand stored procedures are marked in PDM asunmodifiable (ie. User De-
fined), so that future forward engineering actions do not overwrite those pro-
grams. Alternatively, and for triggersonly, the code generationtemplatesarere-
programmed" so that newly-generated triggers are exactly asthosemodifiedin
Programming Phase 2.

When till in Design Phase 2, designers can modify PDM Version 2 any way
they like before generating new SQL scriptsto create aDB Number 2. This
bringsto the end the cycle of changes organized intwo design and two program-
ming phases (and resulting in abrand new database instance). PDM Version 2
and DB Number 2 are now in sync, and the cycle can be repeated.

A cyclecan beginwith design phase or with programming phase- the process
model requiresonly that the phasesdo not conflict, ie. the programmersdo not
modify DB in the design phase and the designers do not modify PDM in the
programming phase. Any intended changesto DB or to PDM arerecordedina
Change M onitoring System and affected initsown phase.

SUMMARY

Inthispaper, | identified anumber of challenging issuesthat underpin round-
trip engineering with databases and | defined a process model to manage the
design-implementation cyclewith arelational database. The paper addressed a
range of issuesin round-trip engineering of dataand procedural partsof adata-
base system. The scope of the paper did not include the design-implementation
cyclewithclient programs(including any SQL codeimplementedintheclient). A
strong underlying assumption of the paper wasthat adatabase content (database
extension) must alwaysberestored after any round-trip engineering cycle.

Inthetrue spirit of round-trip engineering, aprocess model was proposed that
ensuresthat the PDM and the DB are synchronized at all times. Themodel has
been successfully applied to guide devel opment in afew medium-size software
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projectsin amarket research organization (ACNielsen Australia). The projects
involved Visual C++ programs communicating with Sybase System 11 database
viaODBC aswel asthroughthenative API (Sybase CL-Library). Thedevelop-
ment tool sincluded PowerDesigner for round-trip engineering with Sybaseand
Rationa Rosefor round-trip engineering with Visua C++.
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Chapter 6

Achieving Effective Software
Reuse for Business Systems

Daniel Brandon, Jr.
Chrigtian BrothersUniversity, USA

OVERVIEW

“Reuse (software) engineering isaprocesswhere atechnology asset isde-
signed and devel oped following architectural principles, and with theintent of
being reusedinthefuture’ (Bean, 1999). “If programming hasaHoly Grail, wide-
spread codereuseisit with abullet. While I T has made and continuesto make
laudable progressin our reuse, we never seemto makegreat stridesinthisarea’
(Grinzo, 1998). The quest for that Holy Grail hastaken many devel opersover
many yearsdown unproductive paths’ (Bowen, 1997).

Thischapter reportson software reuseresearch (both literatureresearch and
design/coding research) and presentsan approach for effective softwarereusein
the development of business systems. Thisapproachisbased on Object Oriented
technology and providesfor both the specification and enforcement of software
reuse and corporate standards.

BUSINESS SYSTEMS

Business software systemsaretypically composed of threelogical portions
or layersasshownin Figurel. The*presentationlayer” involvesthe primary user
interactiontypicaly viaagraphicd user interface (GUI). The*businesslogic” layer
provides database connectivity, validation, security, transaction control, and other
sequencing or optimization control. Thislayer may bepackaged by avendor inan
application or transaction server or written by auser. The“ databaselayer” pro-
videsfor the manipulation of persistent data, which for most business systems

Previously published in Managing Information Technology in a Global Economy, edited by Mehdi
Khosrow-Pour. Copyright © 2001, Idea Group Publishing.
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Figurel
Presentation | Bfggiefs i | Database
L
ayer Layer Layer

today isstored in arelational database. Theinterfaceto thisprocessisawell
defined standard application programming interface (API) likeODBC or JDBC

using SQL.

NEED FOR REUSE
Today’s software devel opment i s characterized by many disturbing but
well documented facts, including:
M ost software development projects“fail” (60% [Williamson, 1997])
Thesupply of qualified IT professiona sismuch lessthan thedemand
The complexity of softwareisconstantly increasing
I'T needs* better,” “cheaper,” “faster” software development methods
“Object technology promisesaway to ddliver cost-effective, high quality and
flexible systemson timeto the customer” (McClure, 1996). “ | Sshopsthat insti-
tute component-based software devel opment reducefailure, embrace efficiency
and augment thebottomling” (Williamson, 1997). “ Thebottom lineisthis. while
it takestimefor reuseto settleinto an organization —and for an organization to
settle on reuse—you can add increasing val ue throughout the process’ (Barrett,
1999). We say “ object technology” not just adopting an object oriented language
(suchasC++ or Java), sSince one can gill build poor, non object oriented, and non
reusable software even using afully object oriented language.

TYPES AND APPLICATIONS OF REUSE
Radding defines several different types of reusable components (Radding,
1998):

GUI widgets—effective, but only provide modest payback”

Server-Side components— provide significant payback but require extensive
up-front design and an architectural foundation.

| nfrastructure components—generic servicesfor transactions, messaging, and
database ... requireextensive design and complex programming

High-level patterns- identify componentswith high reuse potentia

Packaged applications—only guaranteed reuse, ... may not offer the exact
functiondity required
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Thisarticleand theresearch behind it are concerned with thefirst threetypes
of reuse.

Reusing code has severa key implementation areas. application evolution,
multipleimplementations, standards, and new applications. Thereuse of code
from prior applicationsin new applications hasreceived the most attention. How-
ever, just asimportant isthereuse of code (and thetechnol ogy embedded therein)
withinthe sameapplication.

APPLICATION EVOLUTION

Charles Darwin stated that it was not the biggest, smartest, or fastest
speciesthat would survive, but the most adaptable. The sameistruefor applica
tion software. Applications must evolve even beforethey are completely devel -
oped, since the environment under which they operate (business, regul atory, so-
cia, political, etc.) changes during thetimethe softwareisdesigned and imple-
mented. Thisisthetraditiona “ requirementscreep.” Then after thegpplicationis
successfully deployed, thereisaconstant need for change.

MULTIPLE IMPLEMENTATIONS

Another key need for reusability withinthe same applicationisfor multiple
Implementations. The most common need for multipleimplementationsinvolves
customizations, internationaization, and multiple platform support. Organizations
whose software must be utilized global ly may haveaneed to present aninterface
to customersin the nativelanguage and socialy acceptablelook and fed (“local-
ization”). Themultipleplatform dimens on of reusetoday involvesan architectural
choiceinlanguagesand ddlivery platforms.

CORPORATE SOFTWARE DEVELOPMENT

STANDARDS

Corporate software devel opment standards concern both maintaining stan-
dardsinal partsof an application and maintaining standardsacrossall applica
tions. “For acomputer systemto havelasting valueit must exist compatibly with
usersand other systemsin an ever-changing Information Technology (IT) world
(Brandon, 1999). Asstated by Weinschenk and Yeo, “ I nterface designers, project
managers, devel opers, and business units need acommon set of look-and-feel
guidelinesto design and develop by” (Weinschenk, 1995). Inthe areaof user
Interface standardsa one, Appendix A of Weinschenk’sbook presentsalist these
standards, there are over three hundred items (Weinschenk, 1997). Many com-
paniestoday till rely on sometypeof printed “ StandardsManuals.”
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ACHIEVING EFFECTIVE SOFTWARE REUSE

In most organizations, softwarereusability isagoal that isvery elusive, as
sad by Bahrami “amost difficult promisetoddiver on” (Bahrami, 1999). Radding
stated: “ Code reuse seemsto make sense, but many companiesfind thereisso
muchwork involved, it’snot worth theeffort. ...Inredlity, large scale software
reuseisstill morethe exceptionthantherule’” (Radding, 1998). Beanin*“Reuse
101" states; the current decreased “ hype’ surrounding codereuseislikely dueto
three basic problems (Bean, 1999).

Reuseisan easily misunderstood concept
| dentifying what can bereused isaconfusing process
Implementing reuseisseldom smpleor easy to understand

Grinzo (1998) aso list several reasons and observations on the problem of
reuse, other than for some* difficult to implement but easy to plug-in cases’ such
asGUI widgets a“nightmareof limitationsand bizarreincompatibilities,” perfor-
mance problems, “thorny psychological issues’ involving programmers’ person-
dities, market componentsthat arebuggy and difficult to use, fear of entrapment,
component size, absurd licensing restrictions, or lack of source codeavailability.

Someorgani zationstry to promote softwarereusability by smply publishing
specificationson classlibrariesthat have been built for other in house applications
or that areavailableviathird parties, somedictate sometype of reuse, and other
organizations give away sometypeof “bonus’ for reusing the classlibraries of
others(Bahrami, 1999).

But more often than not, these approachestypically do not result in much
success.

“1t'sbecoming clear to somewho work inthisfield that large-scal e reuse of
coderepresentsamajor undertaking” (Radding, 1998). “ An OO/reusedisci-
plineentaillsmorethan creating and using classlibraries. It requiresformalizing
the practice of reuse” (McClure, 1996).

Based upon both our literature research herein and experimenta implemen-
tations, it was concluded that there were two key componentsto formalizing an
effective software reuse practi ce both within an appli cation devel opment and for
new applications. These componentswere:

1. Defining aspecific Information Technology Architecturewithinwhich ap-
plicationswould be devel oped and reuse would apply

2. Defining avery specific object oriented “ Reuse Foundation” that would be
implemented withinthechosen I T architecture
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Figure2
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“1f you want reuse to succeed, you need to invest in the architecturefirst”
(Radding, 1998). “Without an architecture, organizationswill not beableto build
or evento buy cong stently reusable components.” Intermsof I T architecturesfor
businesssystems, thereare historically several typesas. Central Computer, File
Services, Two or Three Tier Client Server, and Two or Three Tier Internet
(Browser) based. Varioustransaction processing and database vendors havetheir
own *“dants’” on these basi ¢ approaches, which may depend upon how business
logic and the database are distributed.

It was decided to base our implementation research and devel opment onthe
last of these categoriesasshownin Figure 2. Only vendor independent and “ open”
architectureswould beused. The* multipleplatform” dimenson of reusability would
be handled by using Javaand Javagenerated HTML. Internet based applications
are becoming the preferred way of delivering software based serviceswithinan
organization (Intranets), to the worldwide customer base viabrowsersand “ net
appliances’ (Internet), and between bus ness (Extranets).

The presentation layer isrepresented by browser windowsusingHTML or
JavaApplets. TheHTML isastatic container for the JavaApplet or isdynami-
cally generated by aJava Servlet. Thebusinesslogiclayer isintheform of Java
Servletsrunning on theinformation (Internet) server. Thedatabase, typically run-
ning on aseparate server, isaccessed viaJDBC from the Servlets (or evenfrom
the Appletsif a“type4” pure JDBC driver wasused).
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OBJECT ORIENTED REUSE FOUNDATION

Ashasbeen concluded by several authors, “ A reuse effort demandsasolid
conceptual foundation” (Barrett, 1999). The foundation used hereisshownin
Figure 3, and iscalled the“ Object Oriented Reuse Foundation” (OORF). Itis
based on the key object oriented principles of inheritance and composition. By
establishing thisfoundation, an organization can effectively beginto obtainsignifi-
cant reusability since programmersmust inherit their classfrom one of the estab-
lished classesand they must only composetheir class of the established pre-built
components.

Inthedesign of Figure 3, an applicationiscomposed of anumber of Appli-
cation Windows. Each of theseisderived from the Standard Window (or from
another window which was derived from the Standard Window) and is associ-
atedwith atableor view in that database. The Application Window implements
the Standardsinterface. The Application Window iscomposed of screenfields,
which use aspecific screenitem and are bound to acolumn of the databasetable/
view. Each screen item implements the Standards and also implements the
GUIWidget interface. The GUIWidget interface definesthefunctionsthat al screen

Figure4
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Itemsprovide (such as, requestFocus, setText, getText, isvVdid, etc.). The screen
itemscan befromtheJavaAWT, JavaSwing, or third party classlibrariesaslong
astheseclasslibrary sourceshave been extended to use the datain the Standards.
The Standardsinterface definesall the standards used throughout the systemin-
cluding: fonts, colors, styles, Sizes, initial states, icons, etc.

While Figure 3 showsthe conceptual OORF, therewould typically bean
inheritance hierarchy of Standard Windowsincluding forms, tables, etc. Screen
Itemswould beahierarchy alsofor the different types of thesewidgetssuch as
textboxes, radio buttons, choice buttons, etc. Each application could also create
aninheritancehierarchy of gpplication windows.

Figure4 showsagenerated application window which provides navigation
and update support for a sel ected database table including automatic |ookup of
defined foreign keysto maintainreferential integrity. Thereusability for thisex-
amplewas 95%, that is95% of thelinesof codewere already inthe OORF. For
the applicationsimplemented thusfar, al obtained reusability of over 90%.
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Chapter 7

The Future of Software
Development

K aren Church and Geoff te Braake
Port Elizabeth Technikon, South Africa

Software development has changed dramatically in the last fifty years and
will continueto change. Itsfuture courseisof particular interest to devel opers,
in order to gain the correct skills, and to any person faced with a strategic
information technology (1 T) decision. It iscommonly accepted that computers
will play an ever-larger rolein modern civilisation. There are many unknowns,
but the IT decisions made today will affect the competitiveness and
preparedness for tomorrow. Awareness of the central issues that will affect
the future of software development is the best form of preparation. This
chapter presents a view of the future of software devel opment based on the
history of software development and the results of two surveys.

INTRODUCTION

Software devel opment tool s and techniques have changed considerably in
thelast half century, arestill changing, and will continueto changeinthefutureas
hardware capabilitiesimprove and new technol ogies make new methods of pro-
ng and communication possible.

Theaim of thischapter isto draw conclusions about the future of software
development from trendsthat can beidentified initsevolutionto date. Theresults
of two surveyswill helptoillustrate someof thesetrends. Thefirst wasaquestion-
nairesurvey aimed at software devel operswhich compared their First and Last
Project interms of anumber of criteria. The second wasasurvey of job adver-
tisementsin the Computing SA newspaper over aten year period.

Previously published in Managing Information Technology in a Global Economy, edited by Mehdi
Khosrow-Pour. Copyright © 2001, Idea Group Publishing.
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Thischapter addressesthe advancing generationsof programming languages
which have gained and lost popularity over the survey period. The evolution of
coding stylesand software architecturewill be briefly described. The growing
importance of user interfaceswill beexplained, inadditionto abrief description of
theincreasing complexity of applicationsfrom user and devel oper perspectives.
Thefina sectionwill describethefuturetrendsthat can be projected from these
points.

LANGUAGE GENERATIONS AND USAGE

Thefirst gpplicationsof computerswereto gain someform of military advan-
tage based on doing many mathematical calculationsvery quickly (Arnold, 1991,
pp.32-35). Computersthen began to be used in businessto speed up administra-
tivetasks (Leveson, 1997, p.130). Onlinetransaction processing and | ater, the
persona compurter, introduced awhole new dimens onto computing by allowing
peoplewithout programming training to use computers.

Thechallengefor software devel opersisto create programsthat enhancethe
lives and work of those who use them. This section begins by describing the
software devel opment evol ution. Thedevel opment of programming language gen-
erationsand their usageisaddressed.

LANGUAGE GENERATION

Intheearly generationsof programming languages, machineand assembly
languages, the codewaswritten at thelevel of machineinstructions. Many state-
mentswere needed to accomplish simplecal culations. Programswerelong and
errorswereeadly introduced, but difficult toidentify and remove.

Highlevel languages (HL L s) were developed to hide the detailsof imple-
mentation from the programmer. Thisisknown asabstraction andisacommon
themeinthehistory of programming languages (Watson, 1989, pp.4-10). Each
HL L commandistrandated into any number of machineinstructions. HLL coding
isshorter, and programs are easier and quicker to write and debug. The com-
mandsarefairly easy tolearn and meaningful namescan begivento variablesand
subprograms.

Figure 1. Levelsof abstractionin Visual Basic and C++

Visual Basic C++
frmMain.MousePointer = HCURSOR |hCursor;
vbHourglass IhCursor = AfxGetApp()->
L oadStandardCursor
(IDC_WAIT);
m_bCursor = TRUE;
SetCursor(lhCursor);




Table 1: Language Generation by Project
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Style

First Project

Last Project

3GL

57.1%

15.4%

4GL

35.7%

76.9%

Other

7.1%

7.7%

HL Lsdifferintheamount of abstractionthat they provide. Visud Basc (VB)
offersahigher level of abstractionthan C++, ascanbeseeninFigure 1, inthe
operation to change the mouse pointer.

Thehigher theleve of abstraction, fewer linesof codearerequiredto achieve
thesamegoal. Lesscodein the program makesit easier and quicker towriteand
debug. However, thereisusually aperformance penalty when thelevel of the
languageishigher. Flexibility isalso decreased asthelevel of thelanguagein-
creases becausethe programmer hasless control over theexact way inwhichthe
processing isdone (McConnell, 1996, pp. 345-368).

Non-procedural languagestake abstraction even further, with the program-
mer coding thedesired result, not the method for achievingit. Historically, proce-
dural languages have been the most commonly used type of language, as other
language typeswere slower and moreresourceintensive. However, recent im-
provementsin computer performance and language optimisation has meant that
currently, thereisagreater use of the other types of languages. Themost widely
used non-procedural languageis SQL (McDermid, 1991, p.44/3; Kimball, 1996,
pp.xxi-xxii; Watson, 1989, pp.79-81).

Table 1 showsadefinitetrend towardshigher level languageswith over three
quartersof theLast Project being done using fourth generation languages (4GL.S).
Thiscan beattributed to increasing pressureto produce systems moreefficiently
together with the development of more powerful 4GLs (McConnell, 1996,
pp.2,345).

Table 2: Most Sought-after Languages by Year

1989|1990/1992|1993|1994(1995|1996/1997]1998)19992000
ASP 0.0 0.0] 0.0 0.0/ 0.0f 0.0p 0.0 0.0f 04| 25 7.9
C 12.1] 8.7/ 23.1] 28.8| 22.1) 13.5] 9.9 8.5 6.2 7.1| 6.8
C++ 0.0] 0.0 4.6/ 8.0/ 19.4| 18.5| 16.2| 11.7| 12.9] 16.2| 14.7
COBOL 26.4|34.1/ 18,5/ 16.8) 17.1{ 14.9{ 17.0] 21.0{ 12.4| 6.0] 1.3
HTML 0.0l 0.0/ 0.0 0.0 0.0p 0.0 03] 2.9 26| 3.0 87
Java 0.0l 0.0 0.0 0.0 0.0p 0.0 0.6/ 3.2| 4.7 7.0/12.3
JavaScript 0.0/ 0.0 0.00 0.0 0.0p 0.0/ 0.0f 0.0 04 11 31
Natural 12,11 19.2] 15.7/ 12.8| 14.4] 8.6/ 8.8 9.8 9.4| 3.3] 0.5
RPG 18.3]19.2] 21.3] 15.2| 6.8] 9.6/ 5.4| 5.6/ 6.0] 46/ 0.8
SQL 29| 09| 74| 7.2/ 5.0]10.2] 6.5 4.0} 94/10.2 11.0
Visual Basic| 0.0 0.0/ 0.0 0.0] 10.4] 19.5] 17.9| 10.9| 16.5| 20.5| 18.4

Figures = percentage of skills per newspaper issue.
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LANGUAGE USAGE

Whilgt hundredsof programming languageshavebeen created, rlatively few
have beenwiddy used. Theadvert survey (resultsbelow) aimed to discover which
languages have been used the most in software devel opment since 1989. A num-
ber of general trends can be seenfrom Table 2.

Themost sought-after languageintheearly 1990swas COBOL, followed
by RPG, Natural, and C. By theyear 2000, the mainlanguageswere C++, VB,
SQL, and the Web languages Java, HTML, and ASP.

Thus, there hasbeen amoveto higher level languages. Therehhasbeen ashift
away from somelong established |anguageswith the new computing environment
dominated by the graphical user interface and the Web in particular. The next
sectionwill describetheevolution of coding styles.

CODING STYLE EVOLUTION

Asseeninthe previous section, languages have become more powerful and
haveraised their level of abstraction. The programming language chosenfor de-
velopment may either encourage or discourage certain programming practices
depending on their features. Thissection highlights someof these coding styles.

Structured programming becamethe most popular programming styleinthe
1970s. It popularised the concept of modular programming (Yaeger, 1995, p.2).
A source of many problemswith structured programming wasthat variablescould
beinadvertently changed resultinginerrors.

Sincethelate 1980s object-orientation has gained popul arity amongst soft-
waredevel opers. Object-orientation makesuse of classeswhich encapsulatedata
and functionsinto asingle unit. Object-orientation isan important paradigm for
contemporary system devel opersand issupported in many widely used languages,
such asC++ and Java (Salus, 1998, pp.5-11).

Graphical development languages (e.g., Visua Basic, Delphi) popul arised
the concept of component-based programming. Components should bebuilt with
standard interfaces so that they can bereused by other applicationsand any other
languageor tool that supportstheinterfacemethod. Thisiswidely usedin Internet
development. (Jacobson et al., 1997, pp.85,156).

Table 3: Coding Style by Project

Style First Project|Last Project
Component 7.1% 23.1%
Object-oriented 28.6% 61.5%
Structured 50.0% 15.4%
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It iscommon to build components using the object oriented style just as
obj ect orientation makesuse of structured concepts. Thusthedifferent stylescan
be seen asan evol ution of better coding practiceswhich amto increase produc-
tivity, maintainability, reusability, and readakility of codewhiledecreasingthenumber
of errors, and time required for coding and mai ntenance.

The coding style used by the respondentsin the First and the L ast Project
showsconsiderabledifference (Table 3). Inthe First Project the structured style
wasthe most common, followed by the object-oriented style. Structured pro-
gramming decreased considerably inthe Last Project. Object orientation wasthe
clear leader inthe Last Project, followed by the component style.

Themajority of object-oriented and component-based devel opment isdone
using 4GLs. Projectsdevel oped using the structured style, however, mainly use
3GLs.

Therehasbeen an evolutionin programming stylesto promotemodul arisation,
datahiding, and reuse. Thisdlowssystemsto be devel oped more quickly, to have
better quality and to be easier to maintain. Software architecture hasaso changed
congderably resulting in different devel opment opportunitiesand challengeswhich
will bediscussed inthe next section.

SOFTWARE ARCHITECTURE

The previous sections showed that using modern coding stylescan help de-
velopersto produce and maintain syssemsmoreefficiently. Thesestyleshavebeen
supported by different languagesin different eras. Theevolutionin softwarearchi-
tectureisasaresult of the changing capabilities of hardware, and increasingly
distributed and integrated systems.

Most early dataprocessing applicationswereisol ated subsystems. Each ap-
plication used itsown flat datafiles. Onlinetransaction processing increased the
number of recordsin filesand required random accessto records. However, as
the number of recordsinfilesincreased, incons stenciesin dataand accessing of
records became mgjor problems. Thereforeamoreintegrated sol ution was sought
and anumber of database modelswere devel oped.

The network model wasthefirst defacto database model inthelate 1960s
and early 1970s. The databaseswere, however, dependent on the application
devel opment language and many vendorsproduced incompatibile products (Fortier,
1997, pp.187-188). Therelational model, proposed in 1970, wasindependent of
the application devel opment language using the database and many applications
could access the same database (Deen, 1985, p.77). This meant that the
organisation was not bound to aparticular language for devel opment (Hughes,
1988, p.4-5). Therelational model hasbecome popular dueto thesimplicity of
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Figure 2: Three-tier Web architecture
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database structure, theflexibility of relationships, and the richness of datama-
nipulation (Fortier, 1997, pp.207,244).

Inthemid-1980s, Local AreaNetworks (L ANS) were becoming popular
and each department inacompany installed itsown LAN and devel oped itsown
departmental client/server applications. Thisresulted in redundant and inconsis-
tent datawithin an organisation. Inthe early 1990sthe devel opment of enterprise
client/server I T systemswhich replaced or augmented legacy mainframe systems
and integrated departmental LANS, allowed companiesto deliver theright infor-
mation when and whereit could best be used (Goldman, Rawles& Mariga, 1999,
p.19).

These systemsbegan using thethree-tier application architecture (Figure 2),
whichisalso the architecture of the Web. Applicationsare divided into three
layersor tiersknown asP-A-D, presentation, application and data. Eachtier can
be handled by different computersand devel oped in different languages. Not only
canthelayersof the application be split onto different computers, but each layer,
especialy the gpplication and datalayers, may a so be split over multiple comput-
ersmaking it scalable. System maintenance and modificationisfacilitated by al-
lowing changesto onetier or component without affecting the others (Edwards,
1999, pp.3-11). Providing theclient withaWeb interface greatly smplifiesdistri-
bution and platform problems.

Thussoftwarearchitecture hasmoved fromasngleunit onamainframecom-
puter to distributed data, application and presentation tiers. Datahasmoved from
multiple, incons stent data sourcesto singleintegrated databases. In dealing with
large systems, such asthe many enterprise scale systems presently being created,
it is desirable to have an architecture that alows units to be worked on
simulataneoudy and independently (Jacobson, 1997, p.171). An areaof software
development that hasbecomevery important inrecent years, isthe user interface,
whichisdiscussed inthe next section.
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Table 4: User Interface

Style |First Project|Last Project
GUI 35.7% 53.8%
Text-based 50.0% 0.0%
Web-based 14.3% 46.2%

USER INTERFACES

I'T sysemsarecommonly devel oped for accessin adistributed environment,
giving non-1T peopleaccesstoinformation resourcesand data process ng power.
Thismakesthe user interface particularly important in devel opment. Changesin
common user interfacesare described below.

Thefirst few decades of computing focused on performanceand functional -
ity of applications. When millionsof peoplebegan using productivity tools, it be-
came apparent that aprimary determinant of the successof an applicationwasits
ease of usefor usersof al levelsof experience (Van Dam, 1997, p.64).

Fromtheearly 1960sthrough the mid-1980stext-based user interfaceswere
used amost exclusively. TheWIMP GUI (graphica user interfacesbased onwin-
dows, icons, menusand apointing device), first began to gain popul arity with the
Macintoshin 1984 and later achieved itscurrent dominancewith Windows. When
thisevent-driven paradigm wasintroduced it wasdifficult for devel opersto pro-
ducethistypeof application withtheavailabletools. The Windowsenvironment
returned programmersto working in waysreminiscent of low-level programmers.
A tool washeeded toincreasethelevel of abstraction to allow efficient Windows
programming. Thereforelanguages such asVisua Basic and Del phi weredevel -
oped to build GUI applicationsefficiently (Cornell, 1997, pp.xix).

Half of the First Projectsreported in the questionnaire survey were text-
based. Text-based systemsdevel opment virtually disappeared inthe Last Project
whilst Web interfaces show the biggest gains, eventhoughthey arerdatively new
(Table4).

Thusthe user interfaceisone of the most important aspectsof I T systems,
especially asthey are becoming more complex from anumber of perspectives,
which arediscussed below.

GROWING APPLICATION COMPLEXITY

Theuser interfaceisoneof the primary factors determining the successof a
system. Applications are becoming more powerful but al so more complex for
devel opersto produce. Thiscomplexity arisesfrom increasing integration with
other systems and utilising the growing power of computersto produce better
information. Thesetrendsare discussed in termsof groupware, multimedia, mul-
tiplelanguage devel opment, and team work.
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Table 5: Number of Languages by Project

Style  |Multi-languageSingle L anguage
First Project 35.7% 64.3%
Last Project 92.3% 7.7%

Table 6: Number of Languages by Interface

StylelM ulti-language|Single L anguage

GUI 66.7% 33.3%

Text 28.6% 71.4%

Web 87.5% 12.5%
GROUPWARE

Groupwareisarelatively new set of technol ogiesthat allowsfor easier com-
munication and collaborative work by means of acomputer network. TheWebis
avery good medium for deploying groupware technol ogies, but needsto have
enhanced security to makeit viable (Goldman et al., 1999, pp.177-178, 217).

MULTIMEDIA

Multimediaprovidesaricher experience of theapplication for theuser. This
has become possi bl e because of increased hardware capability. Thelnternet pro-
videsacontainer for presenting richmultimediaaswell as providing themeansof
co-ordinating itsdigtribution. Multimediadevel opment toolshave devel oped rap-
idly due to industry focus on the Web and its mass usage (Nicol et al., 1999,
p.79).

Anincreasingly important feeture of the softwareindustry isgaming. Games
tend to tax computer system resourcesto the maximum, making it imperativethat
devel opers access sound and graphics capabilitiesat low levelstoincreasethe
speed of performance. Graphics and sound are combined to create more real
experiences. Thesimulation effects are becoming so realistic that games have
largeinventoriesof the objectsand environmentsthat are s mulated. Somegames
requiresomelevd of artificia intelligence. Therefore, gamesdevelopment isdriv-
ing new technol ogies, many of whichwill haveapplicationsin marketing, educa-
tion and other areas (Tapscott, 1999; Walnum, 1995, pp.6-11,70-71).

MULTIPLE LANGUAGE DEVELOPMENT

Itisevident fromtheadvert survey referred to earlier that multiple technolo-
giesfor asingle project isnot anew phenomenon. Many advertsfor COBOL
programmersincluded required skillsin CICS and some database management
system. In 2000 (Table 2) SQL wasthe fourth most sought-after skill. InWeb
development thereare client side scripting and markup languages and application
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Table 7: Team work by Project

Style First Project|L ast Project
Team member 78.6% 100.0%
W orking solo 21.4% 0.0%

logic languages (Edwards, 1999, pp.3-11). Therefore, multiplelanguage devel -
opment istherule, rather than the exception.

Thequestionnaire demonstrated that over 90% of thelast projects(Table5)
were devel oped with multiplelanguages. Thiswasparticularly true of Web-based
projects. It waslesscommon in GUIsand the minority of text-based systems
(Table6). The component paradigm givesthe possibility of being ableto createa
system built from components devel oped in the best languagefor thetask. The
componentsare connected using an interface protocol, the most common being
COM/DCOM and CORBA (Finne, Leijen, Meijer & Jones, 1999).

TEAM WORK

A team can be defined asagroup of peoplewhose complementary skills,
common purpose and approach enable them to complete atask for which they
aremutually accountable. Teamwork hasawaysbeen important, especially now
with multiplelanguages and having to deal with theintricaciesof networksand
other technologies. Thisrange of skillscan only be provided by teams (Jacobson
eta., 1997, p.54). Table 7 showsthat the percentage of projectsonwhich devel-
opersworked asateam, as opposed to doing the project ontheir own, rosefrom
78.6%t0 100%. Thuswhileteamwork hasbeenimportant inIT development in
thepast, itishasnow becomevital.

Thusapplicationsare becoming more complex, bothintermsof functiondity
offered and consequently in their development. Now that some of theimportant
factors of the past and the present of I T systems devel opment have been dis-
cussed, somethoughtson thefuture are presented.

THE FUTURE

Withtherapidrateof changeinthel T fidditisvery difficult for developersto
seewhat thefuture trends might be. After analysing the past changesand current
situation thefollowing pointsare suggested aslikely directionsfor thefuture of
software devel opment inthe short term.

Thetrend of moving to higher level languagesissureto continuein theeffort
to produce quality systemsefficiently. Hardware advances makethe processing
overheadsincurred by theselanguageslesssignificant.

There needsto be some consolidation in Web development and there are
likely to be numeroustoolsand languages devel oped that attempt to do this. One
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technol ogy that may proveimportant isMicrosoft’s A SP+ Web Forms, which will
alow the devel opment of Web applicationsinasimilar way to Visua Basic. The
ease with which these devel opers can produce compl ete Web applications and
theincreasing usage of A SP (see Table 2) makesthisatechnology towatchinthe
coming months. (Microsoft, 2000a; Microsoft, 2000b).

Javahas progressed from experimental to implemented systemsfaster than
any language except VB. Considering itsrisein popularity and wide usage and
success verd easesto remedy the d ownessin execution, Javacan be expected to
reman amaingtream programming languagefor sometimeto come (Berst, 2000g;
Babcock, 2000).

Deveoperswill experiment with other typesof languages. Non-conventional
languages may be used to produce specific components or applicationsinthe
areasfor whichthelanguageisintended..

Obj ect-orientation appearsto remain dominant, but the component para-
digmislikely to gain ground, especially with theimportance of the Web.

TheWebislikely to play arolein most systems devel opment proj ects, espe-
cialy asXML isdeveloped to alow for more powerful applications. A specific
exampleisthe Simple Object Access Protocol (SOAP), aprotocol that could
providetheinterface between virtually any two systemsaslong asthey support
both hypertext transfer protocol (HTTP) and XML. (Skonnard, 2000).

Anemerging areaof software development isthat of mobiledevices. The
second generation of mobile phones, using digital networks, wereintroducedin
the early 1990s and experienced exponential growth in numbersof usersand
sarvicesassoci ated with them. The next generation of mobiletelecommunications
1999, pp.24-25). It will be animportant area of software development. It will
creste new requirementsand limitationswhiletill providing arich multimediaex-
periencefor an evenlesscomputer literate audience than the Internet.

Thusthefutureof IT systemsdevel opment will haveincreasingly stronger
toolsthat allow devel opersto produce systemsthat address ever more complex
functionality, thereby building applicationsthat will enhancethe user’ sproductiv-
ity, not restrict it. Asthetool sbecome more powerful more of thetechnical cor-
rectnesswill be supplied by thetool, but more creativity will berequired of the
devel oper to adapt to and to use new technol ogiesto produce better I T systems.

CONCLUSION

I'T syslemsplay avita roleinmoderncivilisation. Thereisvirtualy noindus-
try that does not use someform of computerisation and many aretotally depen-
dent on computersto control their operations. Software development will change
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unrecognisably inthefuture, asit hasinthe past, anditisnot possibleto predict
how with any certainty (Leveson, 1997, p.129). This paper attemptsto present
thefuture of software development, intermsof thefactorsfromitspast.

Programming languages have seento be continually raising thelevel of ab-
graction, hiding the detailsof implementation from devel opers. Thisalowsthem
tofocustheir efforts on achieving the best solution, rather than how todoit. The
languages used have changed with thetype of the mgority of applicationsthat are
developed. Currently, aswell asinthe near futurethat meansthe most widely used
languageswill bevisua devel opment languagesthat produce Web applications.
Coding styles have evolved methodsfor making programs easier and quicker to
develop and to maintain by building them out of unitswhich can be changed inde-
pendently and reused in many systems. Theindependent unitsincludethe splitting
of theapplicationinto data, logic and presentation tierswith interfacing protocols
to make applicationsflexible and scalable. The user interface hasbecomeanin-
creasingly important part of applications asthey become more powerful and are
used by peopleof dl levelsof experiencetoimprovetheir efficiency.

Thusthis paper has drawn some conclusions about the future of software
development in order for current devel opersto make themsel ves better prepared
to meet the challengesthat lieahead.
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A use case is a description of a sequence of actions constituting a complete
task or transaction in an application. Use cases were first proposed by
Jacobson (1987) and havesince beenincor porated asoneof thekey modeling
constructs in UML (Booch, Jacobson, & Rumbaugh, 1999) and the Unified
Softwar e Devel opment Process (Jacobson, Booch, & Rumbaugh, 1999). This
paper traces the development of use cases, and identifies a number of
problemswith both their application andtheoretical underpinnings. Froman
application perspective, the use case concept is marked by a high degree of
variety inthelevel of abstraction versusimplementation detail advocated by
variousauthors. Inaddition, usecasesare promoted asa primary mechanism
for identifying objectsin an application, even though they focus on processes
rather than objects. Moreover, there is an apparent inconsistency between
the so-called natural ness of object models and the commonly held view that
use cases should be the primary means of communicating and verifying
requirements with users. From a theoretical standpoint, the introduction of
Implementation issuesin use cases can be seen as prematurely anchoring the
analysisto particular implementationdecisions. Inaddition, thefragmentation
of objects across use cases creates conceptual difficulties in developing a

Previously published in the Journal of Database Management, vol.11, no.4, Copyright © 2000,
Idea Group Publishing.



112 Understanding the Role of Use Cases in UML

comprehensive class model from a set of use cases. Moreover, the role of
categorization in human thinking suggests that class models may serve
directly as a good mechanism for communicating and verifying application
requirements with users. We conclude by outlining a framework for further
empirical researchtoresolveissuesraisedinour analysis.

TheUnifiedModelingLanguage, or UML (Booch, Jacobson, & Rumbaugh,
1999), hasrapidly emerged asastandardlanguageand notati onfor object-oriented
modelinginsystemsdevel opment, whiletheaccompanying Unified Software
Devel opment Process(Jacobson, Booch, & Rumbaugh, 1999) hasrecently been
devel oped to provide methodological support for the application of UML in
software devel opment. Theadoption of UML bringsfocusto object-oriented
devel opersfacedwiththetask of choosingamong dozensof proposed approaches
toobject-orientedanalysisanddesign. Inlight of thisactivity, drivenprimarily by
practitioners, it isimportant from an academic perspective to independently
evaluatethecapabilitiesand limitationsof UM L andtheUnified Process. Such
eval uationscan contributeto the devel opment of theoretical underpinningsof
UML, toanimprovementinitsmodelingpower andusability, andtoitsappropriate
applicationinsystemsdevel opment projects.

This chapter focuses on two components of UML: use cases and class
models. Inparticular, wecons der theappropriatenessof usecasesasacomponent
of an object-oriented modeling language by looking at their role asatool for
communi catingwithusers, and therel ationshi p between usecasesandtheclass
model sthat aredeve oped fromthem. Weexaminethevariability intheamount of
detail usecasesshould contain, accordingto variousproponents, andintroducea
theoretical rational efor includingfewer task detail sthanmany proponentsadvo-
cate. We discuss the lack of ‘ object’-orientation in use cases, and present a
theoretical argument that usecasesmay, infact, not benecessary or valuablein
UML. Finally, wedevelopaframework for empirical researchtoeva uatethevalue
of usecasesandtheir relationshiptoclassmodelsinUML.

USE CASE FUNDAMENTALS

The term “use case” was introduced by Jacobson (1987) to refer to “a
completecourseof eventsinthesystem, seenfromauser’ sperspective’ (Jacobson,
Christerson, Jonsson, & Overgaard, 1992, p. 157). Theconcept resemblesothers
beingintroduced aroundthesametime. Rumbaugh, Blaha, Premerlani, Eddy, and
Lorensen(1991); Wirfs-Brock, Wilkerson, and Wiener (1990); and Rubinand
Goldberg(1992) used scenariosor scriptsinasimilar way. But, despiteconcerns
about theawkwardnessof thename, the use case hasbecomeanimportant part
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of most object-oriented analysis and design methodol ogies. Use cases were
incorporatedintoUML inlate1995, after | var Jacobsonjoinedforceswith Grady
Boochand JamesRumbaugh.

Theusecasediffersfromtypical structuredrequirementsanalysistool sthat
preceded it in two important ways. First, the use case is largely text-based.
Structured analysisemphasi zed theimportanceof graphical tools, suchasWork
Flow and DataFlow Diagrams. Therational efor preferringdiagramstotext was
theoft-cited” apictureisworthathousandwords.” Inaddition, beforestructured
methodol ogiesbecameavail able, anaystsoften generated extensiveand unstruc-
turedtext descriptionsof existing and proposed systemsthat werevery difficultto
use. UML has not abandoned diagrams; Activity, Sequence and Use Case
Diagramsall play important roles during analysis. But use cases are the key
communicationtool, sothat “ usersand customersnolonger havetolearncomplex
notation” (Jacobsonetal., 1999, p. 38).

Second, usecasesfocusontransactionsfromtheuser’ sperspective. InData
Flow Diagrams, transaction sequenceswereoftennot explicitly articulated. All the
steps needed to, for example, sell goodsto acustomer would bethere, but the
connectionsbetweentaking orders, checkinginventory levels, determining pay-
ment typesandauthorizations, printingrecei pts, and other activitieswerenotaways
clear. Thefocuson completetransactionssharessomeimportant similaritieswith
theconcept of a“ process’ in Business ProcessReengineering, “ acollection of
activitiesthat takesoneor morekindsof input and createsan output that isof value
tothecustomer” (Hammer & Champy, 1993, p. 35). Bothemphasizecompl ete
transactionsviewedfromacustomer or user perspective, a thoughtheterms* user”
and “customer” imply adifferent level of analysis. Jacobson, Ericsson, and
Jacobson (1994) deal extensively with using usecasesto support reengineering,
suggestingthesimilarity isnot coincidental.

Usecaseshavebeenall but universally embracedinobject-oriented systems
analysisand devel opment bookswrittensinceJacobsonetal. (1992). Therearea
few exceptions, but their alternatives still share some common features. For
example, Coad (1995) refersto” scenarios’ that ssemmoredetailed or lower level
than usecases(e.g., asalecalculatingitstotal (p. 61)). Nevertheless, Norman
(1996, p. 165) suggests that Jacobson’s use cases and Coad’ s scenarios are
“similar concepts.” KilovandRoss(1994, pp. 9-10) usethenotionof a* contract”
that states” what hasto betruebeforeandwhat will betrueafter theoperation.”
Contractsfocusmoreon pre- and post-conditionsrather thanthestepsin between,
butagaintherearesmilarities.



114 Understanding the Role of Use Cases in UML

USE CASE INTERNAL STRUCTURE

AnalysisVersus Design Focus

Despitethestrong endorsement of thegeneral usecaseconcept, thereare
many variationson Jacobson’ soriginal theme. Not all usecasesarecreatedequal.
First, thereisadifferenceincontent. Usecases, at | east duringtheanalysisphase,
aregeneraly viewed asaconceptual tool. Theusecaseshould emphasize* what’
andnot“how” (Jacobsonetal., 1994, p. 146). Thissuggestsusecasesshouldn’t
mentiontechnology (e.g., Evans, 1999).

A review of usecaseexampl esshowsthat determiningwhenthe“what” ends
andthe*how” beginsisnotalwayseasy. Brown (1997) interprets“what” tomean
what thesystemwill dorather thantheinternal implementation. Thus, hisusecases
includereferencesto screendesigns. Sodothoseof Satzinger and Orvik (1996,
p. 126). Harmonand Watson (1998, p. 121) gofurtherintheir exampleandrefer
to the salesperson’ slaptop. And even Jacobson et al. (1992, p. 162) refer toa
display “pand,” “ recei pt button” and* printer” inoneof their examples. Someuse
casesasoincludemoredetail onbusinessrules. For exampl e, thel BM Object-
Oriented Technology Center (1997, p. 489) video store exampleincludesthe
conditionthat customerswho arenot memberspay adeposit of $60.

However, asLarman (1998, p. 10) notes, use casesare not tied to obj ect-
oriented methodol ogi esand thusaretechnol ogy-independentinthat sense. The
samecannot besaidfor DataFlow Diagrams, whichweredesignedto producea
basic modul estructurefor aCOBOL program. Object-oriented systemscan be
built without use cases and, conversely, use cases could be used in non-OO
projects.

A secondissueinusecasestructureisthevariety of formatsthat havebeen
proposed. Some, suchaswhether usecasetitlesshouldbeginwithgerunds(e.g.,
“AddingaCustomer”) or actionverbs(e.g.,“ AddaCustomer”), arenct serious.
Moreinterestingistheformat of thetextitself. Whilethefirst usecasesin Jacobson
et al. (1992) were written as a paragraph of text, most others have adopted
numbered steps. Morerecently, Jacobson et al. (1994, p. 109) havedoneso as
well. Thismay not appear to beaseriousi ssue, but sequenced and numbered steps
areaninvitationtowriteabout‘ how.” Whiletheunderlyingtechnology need notbe
mentioned, usecaseshavebecomevery processoriented. Inmost cases, they go
much further than simply documenting requirementsto providing asuggested
solution.

Third, thecomprehens venessof usecasesa sovaries. Sometakeaminimalist
approach. Jacobson et al. (1994, p. 105) suggest that use cases should offer
“measurablevauetoanindividua actor.” MacMaster (1997) arguesthat usecases
beused only for main system functions. But White (1994, p. 7) statesthat “the
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collectedusecasesspecify thecompl etefunctionality of thesystem.” WhileDewitz
(1996) uses 11 usecasesin her video storeexampl e, the | BM Object-Oriented
Technology Center (1997) has24.

Fourth, thelevel of detail withineachusecaseal sovaries. Constantineand
L ockwood (2000) distinguishbetween* essential” usecases, containingfewif any
referencestotechnol ogy and user interfaceimpl ementation, and“ concrete” use
casesthat specify theactual interactions. Clearly, use cases could movefrom
essential to concrete as the devel opment process proceeds. But not everyone
agreesthat concreteusecasesshouldever beused(e.g., Evans, 1999). Thereare
alternative mechanismsthat can beusedto document screen design choicesand
amilardecisons.

Jacobsonetal. (1999) advocateaniterativedevel opment approachinwhich
both the number of usescasesandtheir level of detail increaseasthelifecycle
progresses. They suggest that only themost critical usecases(lessthan 10%) be
detailedinthefirst (inception) phase. Asanal ysisprogressesand requirements
becomefirmer, additional use casescan beadded and each can beexpandedto
includeconsiderably moredetail. Theanalyst could movetoward concreteuse
casesor simply expandthedetail withinessential usecases. However, knowing
whereto start, how far to go at each phase, andwhentostop, areclearly critical
Issuesnot easily resolved.

Tofurther complicatetheissue, someof thosewhofavor fewer orlessdetailed
use cases supplement them with “scenarios.” Booch (1994, p. 158) defines
scenariosasexamplesof what can happenwithinausecase. Addacustomer’ is
ausecase. Addingaspecified customer withaparticular name, address, etc.isa
scenario. A well-chosen set of scenarios providesfurther detail on exception
handling and other special cases(e.g., customerswith missing, improbable, or
unusual data(L ockheed Martin, 1996)). Thesamescenarioscanlater beusedin
testing. A minimalist gpproachtousecasescombinedwithextens vescenariosmay
still resultinalargeand very detail ed set of specifications.

Fifth, and perhaps most important, the role of use cases varies among
methodologies. Earlier work on UML focused onthelanguageitself, and was
largely agnosticonissuesof methodol ogy. But theUnified Process(Jacobsonetd.,
1999, p. 34) makesclear what wasalwaysimplicit—usecases” drivethewhole
development process.” Inparticular, they provide“ maor inputwhenfindingand
specifyingtheclasses, subsystemsandinterfaces.” Rosenbergand Scott (1999),
however, suggest that “ domainmodeling” precedeusecasedevel opment. Their
domainmodel isa“ glossary of terms’ (p. 16), intendedtoevol veintotheobjects,
attributes, operationsandassociations. Thisglossary isbasedon“ avail ablerd evant
material” (p. 16). Fromthis, askeletal classdiagramisconstructed. They warn,
“Don’ ttry towriteusecasesuntil youknow what theuserswill actually bedoing”
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(p.45). Thus, usecaseswill drivedesign, but not problem sol ving. Schneider and
Winters(1998) beginwithawritten project descriptionandrisk anaysis, before
definingthesystemboundary andtheactors. Then, usecasesareidentified. Blaha
and Premerlani (1998, p. 49) statethat, “ Onceyou haveasoundobject model, you
should specify use cases’ and warn that early use cases must be regarded as
“tentativeand subjecttorevision” (p. 150).

Insummary, review of theliteratureshowsextensivedifferencesinhow use
cases are defined and used. These differences certainly exceed the basically
cosmeticvariationsinDataF ow Diagramand Entity Rel ationship Diagramformats
foundinstandard structured analysisbooks. Theexistenceof different usecase
formatsandrolesisnot surprising, givenUML’ srelatively short history. Moreover,
UML bringstogether many analysisand design constructsbecauseof itsroots.
Whilethisisanotableachievement, theend product isloosely defined, complex
(perhapsoverly so), lacksastrongtheoretical foundation, andthusisvery difficult
totestinadefinitiveway.

Determining AppropriateUseCaseFocus

Theusecasevariationsarerea . Despiteageneral consensusthat usecases
areintendedfor conceptua modeling of systemrequirements, many versionsof use
casesincorporatesgnificant designandimplementationdetail s(e.g., atthelevel of
theuser interface). Onepotential way toresolvethisapparentinconsistency isto
adopt a contingency perspective. Different approaches may be useful under
different circumstances, withthebest approachinaspecificsituationdependingon
theanaysts, thetask, theusers, and other situational variables.

However, we believe a stronger basis can be adopted to predict a most
appropriateformfor usecasesthat isapplicableacrossawiderangeof circum-
stances. Thekey tothisproposal isimplied by thegeneral ideaoutlined earlier that
usecasesarerequirementsanaysi sand modeling tool sthat shoul d describewhat
asystemdoes(or shoulddo), rather thanhow thesystemworks(or shouldwork).

Withinthiscontext, detail ed usecasesthat specify low-level actor interactions
withasystem(e.g., downtothepoint of screendesigns) essentially embed certain
designchoices. I ntroduci ng suchcons derationsduringanalysismay prematurely
guidethedevel opersto specificimplementationdecisions. Thisisparticularly a
concernwhenthedevel opment processisintendedto support thereengineering of
exi sting processes, anendeavor for which Jacobsonet a . (1994) strongly advocate
theapplication of usecase-drivenmethodol ogy.

Thepotentia impact onsystemsdevel opment of usecasesthat embeddesign
decisions can be understood in the context of awell-known phenomenon in
psychology — anchoring and adjustment (Tversky & Kahnemann, 1974).
Experimentshave shown that, when peoplearegiven aproblemand aninitial
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estimateof itssol ution, andthenaskedtofindafina solutiontoaproblem, they tend
toanchortotheinitia estimate(Plous, 1993). That s, they tendtoprovidesol utions
closetotheinitia estimate(anchor), evenwhenthoseestimatesareseverely flawed.
Anchoringisauseful heuristicthat hel pshumanssimplify problemsolvingina
complex situation. Unfortunately, peopletend to rely on anchoring too much,
resultinginanadjustment bias, inwhichpeopl efail tomakeadequatemodifications
toaninitia solution.

Theconceptsof anchoringandadjustment, thoughoriginaly proposedinthe
context of activities such as subjective probability estimation, have anatural
applicationtousecases. Totheextent that usecasesincludedesignor implemen-
tation detail sthat reflect current waysof doing things, reengineering or process
innovationarelikely tobeinhibited. Consequently, wepostul atethat thelevel of
Innovationthat canbeachievedthroughusecase-drivenprocessdesignisinversely
relatedtothelevel of designorimplementationdetail embodiedintheusecases.

FROM USE CASES TO A CLASS MODEL
Finding Objectsin Use Cases

Inadditiontomodeling systemsrequirementsfromauser perspective, use
casesand usecasediagramsspecify thebehavior of theobjectsinasystem. Some
devel opersusethemtoidentify theobject classesrequiredintheimplementation,
and the behavior of objects. In thisway, use cases feed the development of
subsequentmodelsinUML : particularly theclassmodel , but  sosequence, activity
and statechart diagramsand other UML artifacts.

Inthiscontext, itisuseful toexamineprescriptionsintheUML literaturefor
proceedingtothedevel opment of aclassmode fromusecases. Boochetal. (1999)
advocateapplying“ usecase-basedana ysistohelpfindtheseabstractions’ (p. 55),
and describethisasan“excellent” way toidentify classes. Thisview hassubse-
quently beenechoedintheUnified Process. Accordingto Jacobsonetal. (1999,
p. 34), " usecasesprovidemajor input whenfinding and specifyingclasses.” They
further goontoassert“ classesareharvested fromtheusecasedescriptionsasthe
devel opersread themlooking for classesthat are suitablefor realizing the use
cases.” However, they do not offer specific prescriptionsfor finding classesof
objectsinusecases.

Jacobsonetal. (1994) provideamoredetailed description of theroleof use
casesinfinding classesof domainobjects:

Whenyouhaveafirst proposal for themost obviousentity objects, you
continuetowork withtheusecases. Y ouidentify objectsby traversing
one use-case description at atime to ensure that there is an object
responsiblefor each part of theusecase' scourseof events. ... Whenyou
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work throughtheusecase' scourseof eventsinthisway, itisprobable

that youwill identify further object entities. (pp. 184-185)

“Noun/verbanaysis’ isalsoappliedtousecases(e.g., Holland & Lieberherr,
1996). Nouns, particularly things, personsor rol es, events, placesandinteractions,
arepossibleclasses. But Jacobsonetal. (1994, p. 105) state: “whenwesay that
weidentify and describeause case, we mean that weidentify and describethe
class.” Thissuggeststhat whoever iswriting usecasesshould haveareasonable
understanding of what classes are and what ones are likely to emerge during
analysis. Interestingly, using nounstoidentify classesof objectsor entitiesfor an
application predates UML by alarge period, and has been advocated for data
modelingfor many years. Incontrast, someothershavesuggestedtheclassmodel
(oratleastaninitial attempt) ought to precedethecreation of usecases. Pooley and
Stevens(1999), for exampl e, of fer adetail ed descri ption of methodsfor identifying
classes. They describeaprocessof identifying nounsinasystemsrequirement
document asamechanismfor identifying candidatecl assesfor an application (p.
58). These nouns may comefrom use case descriptionsor other requirements
documents, although Pool ey and Stevensares|ent onthesourceandnatureof these
documents. Rosenbergand Scott (1999, p. 16-17) searchfor nounsandverbsin
“avallablerdevantmateria,” whichincludesthe problem statement, lower-level
requirements, andexpertknowledge,” a ongwith other sourcessuchasmarketing
literature. They also identify classes before writing use cases. Booch (1994)
similarly advocatestheuseof nounanaysistoidentify classes.

Indeed, Pooley and Stevens (1999) indicateapotential problemwith use
casesasacomponent of UML.:

Use case modeling should be used with caution, however, since ...

[t]hereisadanger of building asystem whichisnot object-oriented.

Focusing on use cases may encourage devel opersto losesight of the

architectureof thesystemand of thestatic object structure. (p. 101)
Moreover, they goontostate” wedo not believethat examination of theusecases
isonitsownagoodway tofindobjectsandclasses’ (p. 102, emphasisat source).

Meyer (1997, p. 738) also statesthat, “ use cases are not agood tool for
findingclasses.” Onereasonisthat usecasesemphas zeprocedura sequencesand
thisisat best irrelevant to class modeling and could even be dangerousto the
process. Other concernsarethat userswill either tendto devel op usecasesaround
what ishappening now, thusfailingtocons der reengineering of theprocess, or will
simply reverttofunctional design. However, Meyer believesthat usecasescanbe
effectively employedasavaidationtool andimplementationguide. Thefind system
must becapabl eof handlingthescenari osidentified by users, a thoughperhapsnot
inthesameway asthey originaly envisioned.
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Another approach to modeling classesisthe use of CRC cards (Beck &
Cunningham, 1989; Pooley & Stevens, 1999). Whilenot specifically partof UML,
they canbeusedtomodel therequiredfunctionality respons bilitiesandassociation
collaborationsof classesoncetheclassesthat areneeded havebeenidentified.

In summary, the processfor moving forward from the use case model to
Identify classesisneither universally accepted, evenamong usecaseadherents, nor
doesit appear tobeclearly defined or articul ated. Proposed techniques, suchas
nounidentification, arerootedinol der techniquesfromdatamodeling. Thelack of
I ntegrati onbetween usecasesand classmodel srai sesquestionsabout theval ueof
usecasesinanobj ect-oriented modeling approach.

Objects Versus Processes

A usecaseisinherently task focused. It describesasequenceof activities,
fromstarttofinish, involvedincompl etingawel I-definedtask or transaction. Asin
any task, many participantsmay beinvolvedinthesuccessful completionof ause
case. Theseparticipantsare candidatesfor objectsthat will beimportant tothe
system. A task or processfocus, however, invol vesparticipantsonly totheextent
that they contributetothetask. Hence, ausecaseinvol vesobjectsonly peripheraly
and only asneeded for thetask being model ed. Therefore, acompleteusecase
model may not offer acohesivepictureof thestructural andbehaviora character-
isticsof theobjectsinthedomain. Instead, thesecharacteristicsmay bespread over
several usecases.

Thefragmentationacrossusecasesof informationneededto construct class
definitionsconceptually violatestheprinci pleof encapsul ation, widdly recognized
asoneof thecornerstonesof object orientation. Asaresult, it cancreateasignificant
amount of work for anaystsand devel opersin® defragmentation,” or reconstructing
classesfromapotentially largenumber of narrowly focused viewsthat might be
embeddedinmany different usecases. Althoughwearenot awareof empirical
research, or evenanecdotal reports, ontheextent of thisproblem, acasecanbe
madethat thetask can bedaunting. Theproblemisanal ogoustotheissueof view
Integrationindatabasedesign (Navathe, EImasri, & Larson, 1986). There, the
issueisoneof devel opingaglobal conceptual schemafromaset of diverseuser
viewsof thekindsof entitiesabout whichdataneedtobekept. Sincedifferent users
havedifferent needs, they generally haveadifferent perspectiveonwhichentities
areimportant, and how they aredefinedintermsof attributesandrel ationships.
Problemsto beresolvedincludeidentifying synonyms(entities, attributes, and/or
rel ati onshipswiththesamemeaningthat havedifferent namesindifferentviews) and
homonyms(entities, attributes, and/or rel ationshi pswith different meaningsthat
havethesamenameindifferentviews).
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Similar problemsarepossiblewhenidentifyingobject classes, ther attributes,
andtheir operationsfromaseriesof usecases. Giventhat different usecasesare
likely toberelevanttodifferent usersof asystem, itisreasonabl eto expect that
resol ving synonymsand homonymswill impedethecomprehens veand cons stent
identificationof objectsfromusecases. Consequently, weproposethatidentifying
acomprehensiveand consistent classmodel from use casesalonewill bevery
difficult,if not practicalyimpossible.

USE CASES AS A COMMUNICATION MECHANISM

| solating User sfrom the Class M odel

Inview of theapparent |ack of “ object” focusin usecasesandthepotential
problemsthat canariseinderivingaclassmode fromausecasemoded, itisnatural
to question therationalefor including use casesin UML. Thisisparticularly
Interesting sinceusecasesarearel atively recent additiontoUML . Muchof the
rational efor adopting usecasemoddinginUML focusesontheirsmplicity andthe
fact that they are” comparatively easy to understand intuitively, even without
knowingthenotation. Thisisanimportant strength, sincetheusecasemodel can
sensibly bediscussed with acustomer who need not befamiliar withtheUML”
(Pooley & Stevens, 1999, p. 93). Thisview suggeststhat other UML models,in
particular the class model, are too technical for end usersto understand or be
capableof verifying.

Communi cationwiththesystem'’ sintendedusersisclearly animportant, if not
alwaysexplicitly articulated, goal of use cases. A use case model providesan
inventory of thekindsof i nteractionsthat can occur betweenusersand asystem,
providing “aforum for your domain experts, end users, and developers to
communicateto oneanother” (Booch et al., 1999, p. 229). Use casesarethus
oriented towards interaction with end users for the purpose of verifying the
developers understanding of how asystemworksor will work.

Thisunderstandingisessential for effectivesystemdevel opment, andalso
hel pscreatea“ shared understanding” among team membersthatisacritical part
of thetrust building process(Ring & VandeVen, 1989). Text may beeasier to
understand than diagrams, at |east to an untrained user. Thus, use cases could
contributebothtotheaccuracy of therequirementsspecificationandalsotoits
apparent openness. Theana yst doesnot appear to behiding behind diagramsthat
only | Sprofessional scanunderstand.

In discussing the value of use casesin reengineering businessprocesses,
Jacobsoneta. (1994) smilarly explaintherol eof theusecaseincommunicating
with usersor thoserespons blefor abusinessprocess:

Usecasesarebest described using simplelanguagetofacilitateunder-

standing. ... Therightful owner, that is, the defined businessprocess



Dobing & Parsons 121

owner for theusecase, will thereafter validateeach usecase’ scompli-
ancewiththeestablished corporateobjectives. (p. 178)
Here, usecasesareclearly established asatool for communicatingandverifying
withusersthedevelopers’ understanding of how tasksareperformed. Incontrast,
they clearly see the verification of class or object models as the purview of
developers.
Thereviewersarenormally peopl einthereengineeringteam. Itisunusua
tocommuni catetheobject model stotheempl oyeesingeneral, which
meansthat theonly peoplewho arereally invol ved and competent to

review thesemodel sareinthereengineeringteam. (p. 190)

Taken together, these statements suggest that use cases are an appropriate
mechanismto’ shidd' usersfromtheunderlyingtechnica UM L mode sthatarethe
basi sfor systemsdesignandimplementation.

Theneedtoexcludeusersfromdirect exposuretotheclassmode inparticular
highlightsaninteresting contradictioninUML. Oneof themainargumentsoffered
for devel opi ng obj ect-oriented approachesto systemsanal ysisand designisthat
objectsprovidea“ natura” way of thinkingabout aproblemdomain. Inthisregard,
Booch (1996, p. 39) notesthat “ inaquality object-oriented softwaresystem, you
will find many classesthat speak thelanguageof thedomainexpert” and* (e)very
classin an object-oriented system should map to sometangible or conceptual
abstraction inthedomain of theend user or theimplementer.” Jacobson et al.
(1992) makethecasemoredirectly:

Peopleregardtheir environmentintermsof objects. Thereforeitissmple
to think in the sameway when designing amodel. A model whichis
designedus nganobject-orientedtechnol ogy i softeneasy tounderstand,
asitcanbedirectly relatedtoreality. Thus, withsuchadesign method,
only asmall semanticgap (emphasi sat source) will existbetweenred ity
andthemodel. (p. 42, emphasisat source)

Thepreviousdiscuss onshowsthat, despitethisavowal of thenatural nessand
easeof understanding of UM L model s, thedevel opersof thelanguageexplicitly
Introduceuse casesastheprimary mechanismfor communicatingwithusersto
verify understandingof systemfunctiondity.

Use CasesVersusClassModelsfor Communication
Thecontradiction highlighted abovecanbedealt withinat |east twoways.
Firdt, thereissignificant literatureincognitivepsychol ogy tosupport thecontention
that peoplethink about theworldintermsof thingsthat areclassifiedinparticul ar
categories (e.g., Medin & Smith, 1984). Lakoff (1987) views such category
sructuresasvita for humansurviva, arguingthat“ (w)ithout theability tocategorize,
wecouldnotfunctionatall” (p. 1). Parsonsand Wand (1997) apply categorization
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researchtoanalyzethoseaspectsof object orientationthat aremeaningful froma
systemsanalysi sperspective, and concludethat classificationisavital e ement for
object-orientedanalyss.

Fromacognitiveperspective, onewoul d expect that usersshould beableto
handleclassmodd sasamechani smfor communicatingwithdeve opersinverifying
theconceptua structureof thedomainbeingmodel ed. Of course, issuessuchasthe
difficulty of learning the notation associated with aparticular classmodeling
techniquecannegatively influencecommunication. Neverthe ess, thefundamental
Ideathat a domain can be described in terms of the kinds of objectsinit, the
attributesof theobjects, thebehavior theobjectscanexhibit, and theassociations
amongkindsof objects, ishighly consistentwithresearchonthenatureof categories
that peopl e useto structuretheir knowledge about thingsintheworld. Conse-
quently, wehypothesizethat end userswill beabletointeract directly withclass
modelsinverifyingthestructureof adomain.

Cognitivepsychology al so providesasecond basisfor understanding the
contradiction inherent in advocating use cases as the primary mechanism for
communicating andverifying systemrequirementswithusers. Advocatesof use
cases point to the ease with which they can be understood, asthey describe a
processfrom start tofinish. Not surprisingly, asignificant body of researchin
cognitivesciencedea swithhow peoplethink proceduraly. For example, Schank
and Abel son’ s(1977) work onscriptsdeal swiththesequencing of ordinary and
exceptional eventsinvolvedinagod-orientedactivity. Scriptsprovideamechanism
by which people can understand the temporal relationship in alist of events,
includinginferencesabout eventsthat arenot explicitly statedinadescription
(Bower, Black, & Turner, 1979).

Sincepeoplecanthink ineither process-oriented or object-oriented modes,
we postulate that both process-oriented and object-oriented models can be
understood by usersandareappropriatefor verifyingdifferent aspectsof applica-
tionrequirements. Thissuggeststhat advocating use casesfor work with users,
whileisolating usersfromtheclassmodel sthat aretheprimary basisfor thedesign
of anobj ect-oriented architecture, isnot necessary. Moreover, theperiphera and
diffuserol eof objectsinusecasesisapotentia sourceof difficulty indeveloping
classmodel sfromusecasesand verifyingwhether they areagood model of the
domain’ scategory structureasunderstood by users. It may bemoreappropriate
touseclassmodel sdirectly asamechanismfor communicatingandverifyingthe
structureof theapplicationdomainwithusers.

CALL FOR RESEARCH

Theanalysispresented aboveispurely theoretical. Asfar asweareaware,
advocates of use casesdo not offer empirical evidencethat they area“good”
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mechanism for communicating with users. “ Goodness’ of use casescould be
ascertained by devel opingastandard of effectivecommunicationagainstwhichuse
casescanbeevduated. Alternatively, “ goodness’ couldbeestablishedinarelative
sense by comparing them to other mechanisms for communicating the same
informationwithusers. At present, theval ueof usecaseshasnot been established
empiricallyineither of thesesenses.

Similarly, althoughwehave presented an argument that use casesmay be
Inadequatefor devel oping classmodel s, suchinadequacy hasnot been demon-
strated empirically. Inaddition, athoughresearch onclassification pointstothe
natural nessof category structuresinorganizinginformationabout thingsinthe
world, therearefew empirical studiesaddressingtheability of userstounderstand
classmodels. Thefew studiesthat haveaddressed thiswereconducted prior tothe
devel opment of theparticul ar classmodelingtechniquethatispart of UML. For
example, V essey and Conger (1994) found that noviceana ystswerebetter able
tospecify requirementsus ng process- anddata-oriented methodol ogiesthanusing
obj ect-oriented methodol ogies.

Inaddition, wehaveidentifiedthegrowingtendency for usecasestoinclude
designorimplementationdeci s onsthat coul d beapossi bleimpedimenttoeffective
processdesigninsystemsdevel opment. Despitetheattention paid by sometothe
roleof usecasesin processreengineering, thereisreasontobelievethat popular
usecasestructuresmay anchor devel opersto particul ar sol ution approachesand
thereby narrow thescopeof possi blesol utionscons dered. However, thereisno
empirical evidencethat suchadjustment biasesoccur inpractice.

Inview of themovement toward UML asastandard modeling languagein
practice, thepaucity of empirical researchontheeffectivenessof variousmodeling
techniguesand prescriptionsinUML istroubling. Wehaveoffered atheoretical
framework for studyingthreeissues: prematureinclusionof designdecisions, the
adequacy of usecasesfor extractingclassmodel s, andthejustificationfor choosing
usecasesastheprimary mechanismfor devel oper interactionwithusers. From
theseperspectives, wethink itisimportant toconduct arangeof empirical studies
toeva uatethevariousmodeling componentsof UML.

First, researchisneededtoexaminewhether includingdesignandimplemen-
tationdetail sinusecases| eadstoanchoringand adjustment problemswithrespect
toeffectiveprocessredesign. Thisquestion canbeaddresseddirectly throughlab
experimentsinwhichdevel opersdesignasystemstartingfromeither abstract use
casesor usecasesinwhichdesignor implementationdecisionsarestated. Ineach
group, the“innovativeness’ of theresultingdes gnsrel ativetoexi sting processescan
bemeasured. Tomeasuretheexternal validity of suchresults, correlational field
studiesof object-oriented devel opment using UML can also be undertakento
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measuretherel ationshi p betweenthestructureof usecasesusedandtheextentto
whichimplementationsachieveeffectiveredesgn.

Second, researchisneededtotest theassertionthat, sinceusecasesdo not
focusonobyjects, itwill bedifficulttoextract aclassmodel fromaset of usecases.
Althoughit may bepossibletotest thisinacontrolled | aboratory experiment, it
would be difficult to avoid biasesin the devel opment of use casesthat might
Influencetheability toextract classmodel s. Consequently, anappropriatemethod
for examining the degreeto which use cases support the devel opment of class
model s(and, moregenerally, how classmodel saredevel oped and verified) would
besurveysand/or casestudiesof theprogressionfromusecasemodel stoclass
modelsinprojectsthat usesUML. Amongthevariablestomeasureare: theextent
towhichusecasesaretheexclusivemechanismfor communicationandverification
of requirementswithusers; theextent towhi ch usecasesdrivethedevel opment of
the classmodel; problemsencountered in using use casesto devel op theclass
model ; perceptionsabout the causesof such problems; and approachesthat are
usedtodeal withtheseproblems.

Third, researchisneededto examinewhether usersarecapableof directly
readingandunderstandingclassmodel s, aswell asother UML models. Inaddition,
thereisaneedtostudy whether usecasesaddvalue(e.g.,ineaseof understanding
or ability to captureadditional informationrel ativeto other modelsinUML). For
thistypeof study, laboratory experimentsoffer theability toenforcenecessary
control to permit useful comparisonsacrossgroups. Several issuesneedto be
resolvedinconductingthiskindof study. For exampl e, usecasesincludeprocess
or taskinformation, whilecl assdiagramsdonot. Hence, compari sonsbetweenuse
casesand classmodel smust berestricted to obj ect/attribute/rel ationshipidentifi-
cation, or classmodel smust beused in conjunctionwith other UML modelsto
conduct comprehensivecompari sonswith usecases.

Table 1 summarizesaresearch framework for studying theneedfor, and
effectivenessof, usecasesinUML.

CONCLUSIONS

UML isamodelinglanguagefor obj ect-oriented devel opment that grew out
of thecombi nation of threedi stinct approachesdevel opedintheearly 1990s. Much
of theconceptual foundationof thelanguagecomesouit of i ssuesinobj ect-oriented
programming (Booch, 1994), andthereislittleevidenceabout theextenttowhich
it isappropriate as alanguage for modeling an application domain or system
requirements. In short, wefeel thereisastrong need for academic research to
evaluate the usefulnessof UML and determine its limitations for modeling
requirements. Here, wehaveoffered aframework for eval uating therolesof, and
rel ationshipsbetween, usecasesand classmode sintheUML. Similar researchis



Table 1: A Framework for Empirical Research on Use Cases

class models)

Resear ch Question Primary Primary M ethodology
Independent Dependent
Variable Variable
Do design/implementation detailsin use Use case structure Process innovation Experiment;
cases impede process redesign efforts? Case study
Can class models be effectively extracted Use cases Classmodel Case study;
from use cases? completeness Developer surveys
Do use cases facilitate communication Communication User understanding Experiments;
between developers and users? medium (usecasesor | Domaincoverage User surveys
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ENDNOTE
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Chapter 9

Enhancing a Rigorous Reuse
Processwith Natural Language
Requirement Specifications

LauraFdice, Carmen Leonardi, LilianaFavre, and MariaVirginiaMauco
Universidad Nacional del Centro delaPcia. deBuenosAires, Argentina

Reusability is the ability to use the same software elements for constructing
many different applications. Formal specifications can help to semiautomatic
design processes based on reusable components. However, during the first
stages of devel opment, when theinteraction with the stakeholdersiscrucial,
the use of client-oriented requirements engineering techniques seems to be
necessary in order to enhance the communication between the stakeholders
and the software engineers. In this chapter, we propose a systematic reuse
approach that integrates natural language requirement specifications with
formal specifications in RS (RAISE Specification Language). On the one
hand, some heuristicsare described to devel op a formal specificationin RSL
starting from model s belonging to the Requirements Baseline. On the other
hand, we have defined a reusable component model that integrates RSL
specificationsat different level s of abstraction, aswell aspresented a process
with reuse based on the model.

INTRODUCTION

Thechdlenge of the software engineering isto satisfy theincreasing demand
of software systemsin an economic and rapid way. Reusability softwaretech-
niques based on component library provideagresat potential tofaceit.

Previously published in Managing Information Technology in a Global Economy, edited by Mehdi
Khosrow-Pour. Copyright © 2001, Idea Group Publishing.
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Themain problemsassociated with reusability techniquesare:
How to define reusable componentslibrary
How to identify reusable componentsin alibrary
How tointegrate implementation pieces’ inacons stent
sysemimplementation

Our work hypothesisisthat theformal specification of reusable components
and thedevel opment of rigorousmethodsfor their systematicreusecanhepbuilding
“correct” and efficient software. “If, instead of being devel oped for just oneproject,
asoftware e ement hasthe potentia of serving again and againfor many projects,
it becomeseconomically attractiveto submit it to the best possible quality tech-
niques, such asformal specificationsof components’ (Meyer, 1997). Thereare
many workswhich provethat software reusability can be addressed from formal
descriptions (Krueger, 1992; Mili et dl., 1995; Zaremski & Wing, 1997). Besides,
forma descriptionsareonly accessbleto specidists. If wewant to construct anew
softwaresystemweneed other kind of techniquesto represent thedomaninwhichthe
softwarewill beinserted. Thoserepresentationsmay befamiliar to the stakehol der,
whoseparticipationinthefirs sagesof developmentiscrucid.

Thiswork integratesand extends previousresultsfrom our research (Favre
et a., 2000; Mauco, 2000). We propose areuse strategy that integratesinformal
specificationswith areusable component library. In particular weuse natura lan-
guage-oriented model sbelonging to Requirements Basdline (Leiteet a., 1997).
These modelsare used to produce incompl ete al gebrai c specificationsin RSL
(Georgeet d., 1992), theforma specificationlanguageusedin RAISE method. Those
specifications are theinput for the second part of the strategy, the reuse process,
whaosefind resultisacompleteimperativespecificationinRSL, directly connected to
codethroughthe RAISE method. Thereuse processishbased onthe RC modd which
Integratespecificationsat different leve sof abdraction. Themeanipulation of RC com-
ponentsby meansof reuseoperatorsisthebassfor thereusahility. Anessentid sepin
thereuse processiscomponent identification, not only becauseof itscomplexity, but
aso becauseisthekey tothesuccessof theoveral process.

THE REQUIREMENTS BASELINE

The Requirements Basdline (L eite, 1997) isastructurewhichincorporates
descriptionsabout adesired systemin agiven macrosystem. It iscomposed of
fiveviews, but in thispaper wewill deal only withtheLexiconMode View and
the Scenario View.

ThelLexicon Model View
Itisimplemented by the LEL (Language Extended Lexicon). TheLEL isa
structure that allows the representation of significant terms in the studied
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macrosystem. It delimitsexternal language and enrichestheinterna oneby pro-
viding each symbol with semantics. For each symbol wehaveanameand aset of
synonyms, notions, describing its denotation, and behavioral responses, that de-
scribeitsconnotation.

LEL termsdefine objects (passve entities), subjects(active entities), phrasal
verbsand states. Figure 1 showstwo termsof the LEL for aCredit Card System.
Theunderlined terms correspond to other LEL entries.

Figure 1. Examples of LEL terms

BANK CARD/CREDIT CARD/CARD:

Notions:

- Card to carry out bank operations in teller machines and shops.
- IthasaPIN

- It belongs to a holder

- It may have additional cards.

- It has an expiration date.

Behavioral responses:

- It can be stolen, lost, cancelled or invalid.

- It may be renewed.

PIN

Notions:

- It isa secret number that uniquely identifies a credit card.
Behavioral responses:

- It isrequired for any bank operation in ateller machine.

- It may be modified by the holder.

The ScenarioView
Scenariosdescribe macrosystem stuationsusing natura language descrip-
tionastheir basic representation. They are naturally connectedtotheLEL. In
Figure 2 the components of ascenario are described.

Figure 2: Components of a scenario

Title: identifiesascenario.

Objective: describes the purpose of a scenario.

Context: defines geographical and temporal locations and
preconditions.

Resources: identify passive entities with which actors work.

Actors: define entities actively involved in ascenario, generally a person
or an organization.

Set of episodes: a number of related episodes which represent actions
performed by actorsto fulfill the objective using resources. An episode
may be explained as a scenario.
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Figure 3: Partial Description of a Scenario

TITLE: Carry out acommon withdrawal

OBJECTIVE: A holder wantsto carry out awithdrawal in ateller machinewith a
card

CONTEXT: Theholder isoperating the Credit Card System in ateller machine. Pre-
condition: The holder hasavalid card.

ACTORS: Holder

RESOURCES: Bank Account

EPISODES.

The holder chooses the option withdrawal and an amount to extract.

| F the bank account has enough funds

THEN the amount is debited from the bank account

| F the bank account has not got enough funds

THEN theteller machine cancel sthe operation.

Constraints (non-functional requirements) may be applied to Context, Re-
sources or Episodes. Exceptions, applied to episodes, cause seriousdisruptions
Inascenario, asking for adifferent set of actions. Figure 3 showsapartia descrip-
tion of ascenariofor the Credit Card System. Underlined termsrepresent LEL
symbolsconnecting both models.

THE RSL LANGUAGE

Theam of theproject RAISE (Rigorous Approach to Industrial Software
Engineering), wasto devel op alanguage, techniquesand tool sthat would enable
industria useof forma methods. Theresultsof thisproject includetheRSL Lan-
guagewhichalowsustowriteformal specifications. In addition to this, amethod
to carry out devel opmentsbased on such specifications, and aset of toolsto assist
in edition, checking, transforming and reasoning about specifications (Bjorner,
2000) are provided.

A development in RAI SE beginswith an abstract specification and gradually
evolvesto concreteimplementations. Thefirst specificationisusualy an abstract
gpplicativeone, for examplefunctiona or dgebraic. A first gebraic specification
should have:

* A hierarchy of moduleswhoseroot isthe system module.

A module containing typesand attributesfor the non-dynamicidentified enti-
ties.

» Thesignaturesof the necessary functionsassociated with types. Thesefunc-
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Figure 4. Card Scheme

scheme GLOBAL_TYPES =
class
type
Date,
Card id,
end

T
scheme CARD =
class
obj ect
H: HOLDER,
type
Card :: Pin: Nat Holder: H.Holder AddCards. T.Card_id-set ExpDate: T.Date
CardState: State,
State == Valid | Stolen | Invalid | Lost | Cancelled
value
RenewCard: Card x T.Date — Card

preis_valid(acard),
ChangeCardState; Card x State— Card,

end

tions should be categorized as generators and as observers. Besides, precon-
ditionsshould beformulated for partia functionsby meansof functions, called
guards.
» Thespecification may containinvariantsexpressed asfunctions.
In Figure4 aspecification in an agebraic styleisshown.

THE RC MODEL

The Reusable Component model (RC) describesobject classesat threedif-
ferent conceptud levels: specidization, redization and implementation.

Thespecidizationlevel describesahierarchy of incompletea gebrai c speci-
ficationsin RSL asan acyclic graph. Speciaizationrelationsrelatethenodes. In
thiscontext, it must beverified that if P(x) isaprovable property about objectsx
of type T, then P(y) must beverified for every objecty of type S, where Sisa
Specidizationof T.

Every leaf inthe specidization leve isassociated with asubcomponent at the
redlizationleve. A redlization subcomponentisatreeof complete specificationsin
RSL; wheretheroot isthemost abstract definition; theinternal nodes correspond
to different realizations of theroot and finally, theleaves correspond to subcom-
ponentsat theimplementation level.
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If E1 and E2 are specifications, E1 can beredized by E2if E1 and E2 havethe
samesgnaureand every modd of E2isamodd of E1 (Hennicker & Wirdng, 1992).

Theredlizationlevel dlowsusto distinguishthedesign decisionsrelatedto
thechoiceof physical datastructure. Every specification at theredlizationlevel is
linked to subcomponentsat theimplementationleve.

Theimplementation level groupsaset of imperative schemesin RSL associ-
ated with code. RAISE method providestrand ation processeswhich start witha
final RSL specification and produce aprogram in some executablelanguage, for
exampleAdaand C.

Transforming RC Components

Thetransformation operatorson RSL agebraic specificationsareinfor-
mally described asfollows:

Rename: changesthe name of sortsor operations.

Hide: forgetspartsof aspecification.

Extend: adds sorts, operationsor axiomsto aspecification.

Combine: combinestwo or more specificationsin only one.

Building operators on specifications can be extended to mani pul ate sub-
componentsintheredizationlevel. Informaly, thisimpliess multaneousapplica
tion of an operator to every node of the subcomponent. The subcomponentsare
inductively defined by the operator: redize(S{RS ,RS,,....}) where Sisaspeci-
ficationand RS, RS,,... arereusabl e specifications (theseroots arerealizations of
S).rename r, hide r, extend_r, combine r operatorsweredefinedintherealiza-
tionlevel. For example, Rename-r operator isinductively defined by
Rename r(realize(SP{SP,SP,,..SP }).p)=
realize(rename(SPp) { rename_r(SP,,p), rename _r(SP,, p), ..., rename_r(SP
P}

Given aspecification SPwith signature 2=sig(SP), asignature’ and a
morphismsignature p:> — 3 that representsarename; rename(SP, p) iIsaspeci-
ficationwith signature %’ . Rename_p isdefined asarenaming of itsroot and,
recursively, dl itschildren.

Building operatorsfor specificationsare extended to mani pul ate subcompo-
nentsat theimplementationleve. Informaly, thisimpliesapplication of an opera-
tor to every scheme of asubcomponent. Subcomponentsareinductively defined
by the operator: implement (E,{ ESQ,, ESQ, ,.... ESQ, }), where Eisaspecifi-
cationand ESQ,, ESQ, ,... ESQ_are schemesof imperativeversionsin RSL.
rename _i, hide i, extend i and combine_i operatorsaredefined inductively, for
examplerename i isdefined by

rename_i(implement(E{ESQ,,....ESQ _}),p)=

implement(rename(E,p).{ rename _i(ESQL,p),

,....rename_I(ESQn,p)})
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Figure5: Overall Process
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FROM REQUIREMENTS MODELS TO RSL

IMPERATIVE SPECIFICATIONS

Asit wasmentioned in theintroduction, our objectiveisto construct impera-
tive specifications starting from natural language-oriented models. Therefore, in
our proposa  two essential phasesaredistinguished: Specificationand Reuse. In
the Specification phase anincompletea gebraic RSL specification (IAS) isbuilt
starting from the LEL and Scenario models. IASisthen used as input for the
Reuse phase, applying the 