
IRM PRESS

Successful Software
Reengineering

Sal Valenti

Successful Software
Reengineering

Sal Valenti
University of Ancona, Italy

Hershey • London • Melbourne • Singapore • Beijing

IRM Press
Publisher of innovative scholarly and professional

information technology titles in the cyberage

Acquisitions Editor: Mehdi Khosrow-Pour
Managing Editor: Jan Travers
Assistant Managing Editor: Amanda Appicello
Copy Editor: Amanda Appicello
Cover Design: Tedi Wingard
Printed at: Integrated Book Technology

Published in the United States of America by
IRM Press
1331 E. Chocolate Avenue
Hershey PA 17033-1117
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@idea-group.com
Web site: http://www.irm-press.com

and in the United Kingdom by
IRM Press
3 Henrietta Street
Covent Garden
London WC2E 8LU
Tel: 44 20 7240 0856
Fax: 44 20 7379 3313
Web site: http://www.eurospan.co.uk

Copyright © 2002 by IRM Press. All rights reserved. No part of this book may be
reproduced in any form or by any means, electronic or mechanical, including photocopying,
without written permission from the publisher.

Library of Congress Cataloguing-in-Publication Data

Successful software reengineering / [edited by] Sal Valenti.
 p. cm.
 Includes bibliographical references and index.
 ISBN 1-931777-12-8 (paper)
 1. Software reengineering. 2. Computer software--Development. I. Valenti, Sal, 1956-

QA76.758 .S83 2002
005.1--dc21 2002017311

eISBN: 1-931777-33-0

British Cataloguing-in-Publication Data
A Cataloguing-in-Publication record for this book is available from the British Library.

Other New Releases from IRM Press

Excellent additions to your institution’s library!
Recommend these titles to your Librarian!

To receive a copy of the IRM Press catalog, please contact
(toll free) 1/800-345-4332, fax 1/717-533-8661,

or visit the IRM Press Online Bookstore at: [http://www.irm-press.com]!

Note: All IRM Press books are also available as ebooks on netlibrary.com as well as
other ebook sources. Contact Ms. Carrie Stull at [cstull@idea-group.com] to receive

a complete list of sources where you can obtain ebook information or
IRM Press titles.

• Effective Healthcare Information Systems, Adi Armoni (Ed.)
ISBN: 1-931777-01-2 / eISBN: 1-931777-20-9 / approx. 340 pages / US$59.95 / © 2002

• Human Computer Interaction Development and Management, Tonya Barrier (Ed.)
ISBN: 1-931777-13-6 / eISBN: 1-931777-35-7 / approx. 336 pages / US$59.95 / © 2002

• Data Warehousing and Web Engineering, Shirley Becker (Ed.)
ISBN: 1-931777-02-0 / eISBN: 1-931777-21-7 / approx. 334 pages / US$59.95 / © 2002

• Information Technology Education in the New Millennium, Mohammad Dadashzadeh,
Al Saber and Sherry Saber (Eds.) /
ISBN: 1-931777-05-5 / eISBN: 1-931777-24-1 / approx. 308 pages / US$59.95 / © 2002

• Information Technology Management in Developing Countries, Mohammad Dadashzadeh
(Ed.) / ISBN: 1-931-777-03-9 / eISBN: 1-931777-23-3 / approx. 348 pages / US$59.95 / © 2002

• Strategies for eCommerce Success, Bijan Fazlollahi (Ed.)
ISBN: 1-931777-08-7 / eISBN: 1-931777-29-2 / approx. 352 pages / US$59.95 / © 2002

• Collaborative Information Technologies, Mehdi Khosrow-Pour (Ed.)
ISBN: 1-931777-14-4 / eISBN: 1-931777-25-X / approx. 308 pages / US$59.95 / © 2002

• Web-Based Instructional Learning, Mehdi Khosrow-Pour (Ed.)
ISBN: 1-931777-04-7 / eISBN: 1-931777-22-5 / approx. 322 pages / US$59.95 / © 2002

• Modern Organizations in Virtual Communities, Jerzy Kisielnicki (Ed.)
ISBN: 1-931777-16-0 / eISBN: 1-931777-36-5 / approx. 326 pages / US$59.95 / © 2002

• Enterprise Resource Planning Solutions and Management, Fiona Fui-Hoon Nah (Ed.)
ISBN: 1-931777-06-3 / eISBN: 1-931777-26-8 / approx. 306 pages / US$59.95 / © 2002

• Interactive Multimedia Systems, Syed M. Rahman (Ed.)
ISBN: 1-931777-07-1 / eISBN: 1-931777-28-4 / approx. 316 pages / US$59.95 / © 2002

• Ethical Issues of Information Systems, Ali Salehnia (Ed.)
ISBN: 1-931777-15-2 / eISBN: 1-931777-27-6 / approx. 318 pages / US$59.95 / © 2002

• Intelligent Support Systems: Knowledge Management, Vijay Sugumaran (Ed.)
ISBN: 1-931777-00-4 / eISBN: 1-931777-19-5 / approx. 318 pages / US$59.95 / © 2002

• Human Factors in Information Systems, Edward Szewczak and Coral Snodgrass (Eds.)
ISBN: 1-931777-10-1 / eISBN: 1-931777-31-4 / approx. 340 pages / US$59.95 / © 2002

• Global Perspective of Information Technology Management, Felix B. Tan (Ed.)
ISBN: 1-931777-11-4 / eISBN: 1-931777-32-2 / approx. 334 pages / US$59.95 / © 2002

• Information Systems Evaluation Management, Wim van Grembergen (Ed.)
ISBN: 1-931777-18-7 / eISBN: 1-931777-37-3 / approx. 336 pages / US$59.95 / © 2002

• Optimal Information Modeling Techniques, Kees van Slooten (Ed.)
ISBN: 1-931777-09-8 / eISBN: 1-931777-30-6 / approx. 296 pages / US$59.95 / © 2002

• Knowledge Mapping and Management, Don White (Ed.)
ISBN: 1-931777-17-9 / eISBN: 1-931777-34-9 / approx. 348 pages / US$59.95 / © 2002

Successful Software
Reengineering

Table of Contents

Foreword ... i
Sal Valenti, University of Ancona, Italy

Preface .. iii

Chapter 1. Computer Aided Method Engineering 1
Ajantha Dahanayake, Delft University of Technology,
The Netherlands

Chapter 2. Architecture and Implementation Issues 16
Ajantha Dahanayake, Delft University of Technology,
The Netherlands

Chapter 3. Future Directions in CASE Repositories 58
Ajantha Dahanayake, Delft University of Technology,
The Netherlands

Chapter 4. Audit of a CASE Environment .. 69
Mario Piattini, Universidad de Castilla-La Mancha, Spain
Jesús García-Tomás, Universidad Politecnica de Madrid, Spain

Chapter 5. Process Model for Round-trip Engineering
with Relational Database .. 76

Leszek A. Maciaszek, Macquarie University, Australia

Chapter 6. Achieving Effective Software Reuse for Business
Systems .. 92

Daniel Brandon, Jr., Christian Brothers University, USA

Chapter 7. The Future of Software Development 99
Karen Church and Geoff te Braake,
Port Elizabeth Technikon, South Africa

Chapter 8. Understanding the Role of Use Cases in UML:
A Review and Research Agenda .. 111

Brian Dobing, University of Lethbridge, Canada
Jeffrey Parsons, Memorial University of New Foundland, Canada

Chapter 9. Enhancing a Rigorous Reuse Process with Natural Language
Requirement Specifications .. 129

Laura Felice, Carmen Leonardi, Liliana Favre
and Maria Virginia Mauco, Universidad Nacional del Centro de la
Pcia. de Buenos Aires, Argentina

Chapter 10. Extended Spatiotemporal UML: Motivations,
Requirements and Constructs ... 143

Rosanne Price, Monash University, Australia
Nectaria Tryfona and Christian S. Jensen,
Aalborg University, Denmark

Chapter 11. A Design Method for Real-Time Object-Oriented
Systems Using Communicating Real-Time State Machines 171

Eduardo B. Fernandez, Jie Wu and Debera R. Hancock
Florida Atlantic University, USA

Chapter 12. Java Integrated Development Environments’
Support for Reuse-Oriented Software Development 186

Jenni Ristonmaa, Jarmo Ahonen and Marko Forsell
University of Jyväskylä, Finland

Chapter 13. Information Modeling and Method Engineering:
A Psychological Perspective ... 193

Keng Siau, University of Nebraska-Lincoln, USA

Chapter 14. Load-Testing of Web Site Applications:
Analysis and Recommendations ... 209

Vijay V. Raghavan, Northern Kentucky University, USA

Chapter 15. Component-based ERP Design in a
Distributed Object Environment ... 214

Bonn-Oh Kim, Seattle University, USA
Ted Lee, Memphis State University, USA

Chapter 16. Knowledge and Object-Oriented Approach for
Interoperability of Heterogeneous Information Management
Systems .. 220

Chin-Wan Chung and Chang-Ryong Kim
Korea Advanced Institute of Science and Technology, Korea
Son Dao, Hughes Research Laboratories, USA

Chapter 17. A Recursive Approach to Software Development 247
Shirley A. Becker, Florida Institute of Technology, USA
Alan A. Jorgensen, Advanced Engineering Technology, USA

Chapter 18. Adding Alternative Access Paths to Abstract
Data Types ... 256

Xavier Franch and Jordi Marco
Universitat Politècnica de Catalunya, Spain

Chapter 19. Relational Data Modeling for Geographic Information
Systems .. 268

Lawrence A. West, Jr., University of Central Florida, USA
Brian E. Mennecke, East Carolina University, USA

Chapter 20. Software Process Models are Software Too:
A Domain Class Model for Software Process Models 284

Daniel Turk, Colorado State University, USA
Vijay Vaishnavi, Georgia State University, USA

Chapter 21. A Process Model for Certification of Product
and Process .. 293

Hareton Leung and Vincent Li
Hong Kong Polytechnic University, Hong Kong

About the Editor ... 309

Index ... 310

Foreword

The reengineering of legacy systems is widely recognized as one of the most
significant challenges to be faced by the software engineering community.

A legacy system is a technically obsolescent component of the infrastructure
of a content management environment (Omnibus Lexicon Definition, http://
www.fourthwavegroup.com/Publicx/1301w.htm). Legacy systems embody
substantial corporate knowledge including requirements, design decisions and
business rules. Databases, application programs and all of the other forms of
hardware and software typically owned by companies, including mainframes,
personal computers, terminals, networks and operating systems, constitute them.

Although the functionality delivered by a legacy system may be available from
more modern technology, a migration to newer systems may be deterred by the
possibility of service disruption during upgrading, or by the perceived difficulty in
converting legacy content to new models and formats.

The need for reengineering legacy systems is thus implicitly contained in the
definition given above, and is motivated by the desire to utilize more cost effective
hardware or software platforms, to reduce the costs of maintenance (as the Y2K
problem has taught) or to add significant new functionalities. The problem is
widespread since it effects all kinds of organizations; failing to face it may hamper
an organization’s attempts to remain competitive if not threaten its very existence
on the market. Finally, it is a problem that may persist over time, as there seems to
be no good reason for being confident that systems currently under development
will not be tomorrow’s legacy systems.

 Among the possible aspects that need to be taken into account while
reengineering a legacy system, the software perspective represents the focal issue
(and in fact reengineering is often treated as a synonym of software reengineering).

As with many new and evolving fields of research, the scientific community has
yet to agree on a common taxonomy of terms with respect to software reengineering.
In fact, although in 1992 the Joint Logistic Commanders Computer Resources
Management group (JLC/CRM) authorized and sponsored a DoD policy workshop
aimed to formally define a software reengineering terminology. As of today, there

vii

viii

is not even an agreement upon the spelling of reengineering (the most common being
“re-engineering” and “reengineering”). Therefore, it is important to provide some
basic definitions of the domain, in order to gain a common understanding of the
terms and the keywords that will be used throughout this volume.

Software Reengineering may be defined as “the examination and the alteration
of an existing subject system to reconstitute it in a new form.” On the other hand,
it may also be defined as “the process of modifying the internal mechanisms of a
system or program or the data structures of a system or program without changing
its functionalities.” Whichever definition is adopted, the primary goal of software
reengineering is to attain new levels of efficiency of the existing assets, without
recurring to the development of new systems. Therefore, an important aspect that
needs to be further explored is to define the extent to which reengineering is helpful
and to identify some metrics, if any, that can be used to decide whether the option
of rebuilding from scratch should be followed.

Regardless, all of the researchers in the field seem to agree on the fact that the
process of software reengineering encompasses a combination of sub-processes
such as code-reengineering, restructuring, redocumentation, retargeting, reverse
and forward engineering. Some of these sub-processes are aimed at program
understanding, as for instance restructuring, redocumentation and reverse engineering.
The others are geared towards evolution, as for instance, code reengineering,
retargeting, forward engineering.

Thus software reengineering may imply, among many other tasks, restructuring
“spaghetti-like” code (code-reengineering); transforming the system representation
from one form to another at the same relative level of abstraction, while preserving
the external functional behavior (restructuring); producing support documentation
and reformatting the systems’ source code listings (redocumentation); transporting
and hosting or porting the existing system to a new configuration (retargeting);
understanding, analyzing and abstracting the system to a new form at a higher
abstraction level (reverse engineering), generating new source code from design
information captured via previous reverse engineering activities (forward engineering).

These are just some of the topics that will be covered by the research
contributions contained in this volume: a useful starting point for anyone interested
in getting a deeper insight on software reengineering tools and techniques.

I would like to dedicate this book to my parents.

Sal Valenti
Università di Ancona, Italy,
September 18, 2001

ix

Preface

Software Engineering, software development and software reuse are important
issues to all organizations. Getting the most out of software packages by ensuring
effective development, testing and use can save money and improve business
practices. As the implications become more widespread, researchers, practitioners,
academicians and information systems managers alike need to have access to the
most up-to-date research and practice in software engineering and development.
The chapters in this book address the timely topics of auditing software engineering
processes, enterprise resource planning and software reuse and other relevant
applications and technologies. From academics reporting research findings to
developers reporting on best practices, the authors of these chapters are from
diverse cultural and industry backgrounds and provide insights from their varied
experiences.

Chapter 1 entitled, “Computer Aided Method Engineering” by Ajantha
Dahanayake of Delft University of Technology (The Netherlands) discusses a
conceptual model to specify the functionality of a support environment. The chapter
first presents a review of basic concepts and approaches for deriving models for
computer aided Software Engineering (CASE) environments. The chapter then
offers an informal description of service component concepts used to derive a
generic framework. Finally, the chapter outlines a configuration of service
components to support computer aided method engineering (CAME).

Chapter 2 entitled, “Architecture and Implementation Issues” by Ajantha
Dahanayake of Delft University of Technology (The Netherlands) concentrates on
using a representation formalism to construct a problem specific CAME environment.
Such an automated support environment must be provided for the information
systems design state in particular for the required UpperCASE tools according to
the methods chosen for the problem specific environment.

Chapter 3 entitled, “Future Directions in CASE Repositories” by Ajantha
Dahanayake of Delft University of Technology (The Netherlands) reports on how
CAME environments provide a fully flexible environment for method specification
and integration and can be used for information systems design activities. The

x

chapter then discusses how this theory can lead to the design of the architecture of
such an environment.

Chapter 4 entitled, “Audit of a CASE Environment” by Mario Piattini of the
Universidad de Castilla-La Mancha and Jesús García Tomás of Universidad
Politecnica de Madrid (Spain) addresses the questions that must be answered when
auditing a CASE environment. The chapter reflects upon themes that have been
dealt with in the literature from the perspective of an information systems audit. The
authors introduce the basic concepts of an information systems audit and analyze
the risks that need to be addressed when installing a CASE tool.

Chapter 5 entitled, “Process Model for Round-trip Engineering with Relational
Database” by Leszek A. Maciaszek of Macquarie University (Australia) identifies
difficult round-trip scenarios and defines the processes needed to handle those
scenarios. The processes conform to the current state-of-the practice in forward
and revere engineering. The chapter then discusses the limitations of a tool-driven
round-trip engineering.

Chapter 6 entitled, “Achieving Effective Software Reuse for Business Systems”
by Daniel Brandon, Jr. of Christian Brothers University (USA) reports on software
reuse including discussions of both literature research and design/coding research.
The chapter further presents an approach for software reuse in the development of
business systems. The approach discussed in the chapter is based on object-
oriented technology and provides for both the specification and enforcement of
software reuse and corporate standards.

Chapter 7 entitled, “The Future of Software Development” by Karen Church
and Geoff te Braake of Port Elizabeth Technikon (South Africa) discusses the
results of two surveys as they illustrate the trends in software development. The
authors look at the history of software development and its evolution. The authors
discuss the evolution of programming languages, coding styles and software
architecture. It further looks at the growing importance of user interfaces and
describes future trends.

Chapter 8 entitled, “Understanding the Role of Use Case in UML: A Review
and Research Agenda” by Brian Dobing of the University of Lethbridge and Jeffrey
Parsons of Memorial University of New Foundland (Canada) focuses on two
components of UML: use cases and class models. The authors consider the
appropriateness of use cases as a component of an object-oriented modeling
language by examining their role as a tool for communicating with users. The authors
further consider the relationship between use cases and the class models that are
developed from them. Finally, the authors offer a framework for empirical research
to evaluate the value of use cases and their relationship to class models in UML.

Chapter 9 entitled, “Enhancing a Rigorous Reuse Process with Natural
Language Requirement Specifications” by L. Felice, C. Leonardi, L. Favre and V.

xi

Mauco of the Universidad Nacional del Centro de la Pcia. de Buenos Aires
(Argentina) proposes a systematic reuse approach that integrates natural language
requirement specifications with formal specifications in RAISE Specification
Language. It addresses the problems associated with reusability techniques,
discusses the reusability process and provides a concrete example of the principles
discussed.

Chapter 10 entitled, “Extended Spatiotemporal UML: Motivations,
Requirements, and Constructs” by Rosanne Price of Monash University (Australia),
Nectaria Tryfona and Christian Jensen of Aalborg University (Denmark) presents
a conceptual modeling language for spatiotemporal applications that offers built-in
support for capturing spatially referenced, time-varying information. Specifically,
the well-known object-oriented unified modeling language is extended to capture
the semantics of spatiotemporal data. The chapter gives examples to illustrate the
simplicity and flexibility of this approach.

Chapter 11 entitled, “A Design Method for Real-Time Object-Oriented
Systems Using Communicating Real Time State Machines by Eduardo B. Fernandez,
Jie Wu and Debera R. Hancock of Florida Atlantic University (USA) proposes an
object-oriented analysis and design methodology that augments the traditional
Unified Modeling Language dynamic model with real-time extensions based on
high-level parallel machines and communication notations from Communicating
Real-Time State Machines. The chapter also provides an example of the proposed
methodology as it applies to an automated passenger train system.

Chapter 12 entitled, “Java Integrated Development Environments’ Support
for Reuse-Oriented Software Development” by Jenni Ristonmaa, Jarmo Ahonen
and Marko Forsell of the University of Jyväskylä (Finland) reports on the authors’
study of three Java IDEs and how they support reuse-oriented software development.
The authors derived the evaluation criteria from a known reuse model. They
conclude that current Java IDEs need to improve their support for the reuse
process.

Chapter 13 entitled, “Information Modeling and Method Engineering: A
Psychological Perspective” by Keng Siau of the University of Nebraska-Lincoln
(USA) proposes the use of cognitive psychology as a reference discipline for
information modeling and method engineering. The chapter reviews theories in
cognitive psychology and applies them to information modeling and method
engineering.

Chapter 14 entitled, “Load-Testing of Web Site Applications: Analysis and
Recommendations” by Vijay Raghavan of Northern Kentucky University (USA)
discusses the need and benefits of load testing. The author provides criteria for
developing a metrics program for load testing Web site applications. Finally, the

xii

chapter concludes that it is critical for organizations deploying Web sites to develop
a load-testing plan that includes all aspects of site development.

Chapter 15 entitled, “Component-Based ERP Design in a Distributed Object
Environment” by Bonn-Oh Kim of Seattle University and Ted Lee of Memphis
State University (USA) outlines strategic steps needed to wield a dominant power
in the future Enterprise Resource Planning (ERP) market. The steps discussed are:
knowledge modeling, componentization of domain knowledge, implementation of
componentized domain knowledge, and marketing strategies for domain knowledge
components.

Chapter 16 entitled, “Knowledge and Object-Oriented Approach for
Interoperability of Heterogeneous Information Management Systems” by Chin-
Wan Chung and Chang-Ryong Kim of the Korea Advanced Institute of Science
and Technology (Korea) and Son Dao of Hughes Research Laboratory (USA)
incorporates concepts and constructs associated with the knowledge and object-
oriented paradigms with abstract views, procedures, encapsulation, inheritance
and class composition hierarchies to resolve problems

Chapter 17 entitled, “A Recursive Approach to Software Development” by
Shirley Becker of the Florida Institute of Technology and Alan Jorgensen of
Advanced Engineering Technology (USA) proposes that a recursive software
development process be used as a means of managing the complexity of today’s
software systems. The authors advocate that the recursive approach has the
flexibility needed to perform development activities in any order to ensure that
systems requirements are met.

Chapter 18 entitled, “Adding Alternative Access Paths to Abstract Data
Types” by Xavier Franch and Jordi Marco of the Universitat Politecnica de
Catalunya (Spain) presents a proposal for developing efficient programs in the
abstract data type programming framework, keeping the modular structure of
programs and without violating the information hiding principle. The proposal
focuses in the concept of shortcut as an efficient way of accessing data, an
alternative to using primitive operations of ADT.

Chapter 19 entitled, “Relational Data Modeling for Geographic Information
Systems” by Lawrence West, Jr. of the University of Central Florida and Brian
Mennecke of East Carolina University (USA) addresses data modeling problems
inherent in the use of geographic information systems that are not adequately
covered by traditional modeling techniques. This chapter proposes relational
modeling techniques that document organizational data integrity rules when systems
that include spatial data are developed for more widespread use.

Chapter 20 entitled, “Software Process Models are Software Too: A Domain
Class Model for Software Process Models” by Daniel Turk of Colorado State
University and Vijay Vaishnavi of Georgia State University (USA) focuses on the

xiii

domain class model as an example of one type of model that could be produced if
an approach such as the Unified Process were used in the process modeling
domain. While identifying the conceptual needs of process modeling systems, these
models leave open the choice of how to formalize and implement actual solutions.
The authors develop a domain class model for process models as an example.

Chapter 21 entitled, “A Process Model for Certification of Product and
Process” by Hareton Leung and Vincent Li of Hong Kong Polytechnic University
(Hong Kong) identifies two process models, one for process certification and
another for product certification. The authors then propose a certification process
for Commercial Off the Shelf (COTS) product and its development process.
Finally, the authors develop a model of certification process for both product
certification and development process certification.

As businesses seek to improve their use of software, the chapters in this book
will provide insightful theoretical discussion as well as practical examples and case
studies illustrating the concepts discussed. Researchers, academician, students, or
software engineers will find the information contained herein invaluable as a starting
point or a supplement to their research and practice. From how to improve reuse
techniques to how to more efficiently develop and use models, this book contains
practical and theoretical information which is essential to those seeking to fully
understand the emerging field of software engineering.

IRM Press
January 2002

Dahanayake 1

Chapter 1

Computer Aided Method
Engineering

Ajantha Dahanayake
Delft University of Technology, The Netherlands

The relationship between information systems development methods,
organizational information systems engineering requirements, and the
advantage of flexible automated support environments is presented. CASE
technology is presented as a possible solution to provide flexible automated
support. In this chapter the major topic is a conceptual model to specify the
functionality of a support environment. First a review of a number of basic
concepts and approaches for deriving models for CASE environments are
given. An informal description of service component concepts used to derive
a generic framework is presented. Further, a configuration of service
components, to support Computer Aided Method Engineering (CAME), is
outlined.

MODELS OF SUPPORT ENVIRONMENTS
There are a number of approaches attempting to develop a better

understanding of CASE technology to support information modeling. Some
of these will be discussed below to formulate the rationale behind the
approach adopted in this book.

Models Based on Integration Issues
Integration issues are discussed in Wasserman (1990), Brown et al.,

(1992), and Wallnau et al. (1991), from the viewpoint that integration can be
thought of as a set of characteristics of a CASE environment. These charac-

Previously published in Computer-Aided Method Engineering: Designing CASE Repositories for the
21st Century, edited by Ajantha Dahanayake. Copyright © 2001, Idea Group Publishing.

2 Computer Aided Method Engineering

teristics are seen as independent dimensions, namely data integration, control
integration, and presentation integration, along with which integration issues
can be examined.

Subsequently, the data, control, and presentation dimensions have been
expanded by adding platform and process integration dimensions (Zarrella,
1990). Platform integration refers to the technical capability of tools that
execute on different hardware and system software platforms to interoperate
effectively. Process integration refers to the ability of a CASE tool to represent
and support the development process. This dimensional view of tool integra-
tion is further enhanced by distinguishing between integration of tools with
a platform and integration of tools with a process. Tool-process integration is
subdivided into life-cycle processes and development processes. Platform
and process integration is seen as orthogonal to data, control, and presentation
integration (Thomas et al., 1992). This multidimensional view of integration
is somewhat problematic. It is not clear what is meant by: “the dimensions are
orthogonal” and whether they can, or should be considered separately.

An approach discussed in Thomas et. al. (1992) treats integration not as
a property of a component, but rather as a property of a relationship between
components. Goals are defined for the properties of each relationship such as
the relationship between a tool and a framework a tool and a development
process, and among tools. A framework is the platform where the tools
operate according to this interpretation; this framework is similar to the NIST/
ECMA reference framework (Brown et al., 1992).

Although this view is useful to highlight integration issues as being
distinct environment characteristics in their own right, it has its own limita-
tions. The integration relationships are expressed as goals, which an environ-
ment may achieve. Unfortunately, there is no discussion about how to achieve
these goals, what dependencies there are between them, and what trade-offs
have to be made. This approach is helpful to consider the potential relation-
ships between every pair of tools in the environment; but there is little
direction to addressing the environment as a whole.

Repository Based Models
A view focused on a central repository as a key mechanism for data

integration in CASE environment is preferred by many. This has formed the
basis of several efforts to develop environments. There are a number of CASE
environments offering repository-based models, for example, PCTE (Por-
table Common Tool Environment) and its object management service (Euro-
pean Computer Manufactures Association, 1990). Some other examples are
proprietary tools, such as IEW and IEF (Staring, 1989), object management

Dahanayake 3

workbench, software through pictures (Wasserman, 1990), research based
Daida (Jarke et al., 1992), and Ithaca (Mey et al., 1993). There is a belief that
a repository of some sort at the heart of a CASE environment should be the
primary means of tool integration (Welke, 1988).

A data storage mechanism, an interface to persistent data, a set of
schemata, an information model, and a concept of operations to manipulate
the data characterize a repository. The description of the stored data, called a
schema, is the main concept that makes it different from a database. A schema
typically records information about the different types of data in the repository
and how these data are interrelated. The schema itself will be stored some-
where, often together with the instance data and will require an interface to
access it, often the same interface as the instance data. The schema informa-
tion may be specific to a particular application domain or may be more general
to a wide set of domains. As a description of all the data stored in the
repository, the schema has an important role to play. In effect, a representation
of the schema acts as the definition of the data stored in the repository,
explaining the design of the data structures. The schema can be used as the
basis for determining access. The ability of the schema as a representation of
a real-world application domain is critical to the success of the repository.
Figure 1 gives the definitions following this explanation of Welke (1989).

Figure 1. Four conceptual levels of a CASE repository that are important
for providing a flexible andextendable mechanism for integration

4 Computer Aided Method Engineering

Current MetaCASE tools based on repository models enable modifica-
tion of diagram elements and associated storage and manipulation function-
ality. Modification of advanced aspects such as consistency verification,
diagram technique definition according to the requirements of an arbitrary
technique, and generation or model execution is still non-existent. Practice
has been based on providing method component libraries, method reuse, and
runtime adaptability. The existence of a schema, or a meta model within an
environment, is itself not adequate, even though meta model integration leads
to increased flexibility (Verhoef, 1993; Dahanayake, 1997). There are many
issues that need to be resolved. These issues fall into two main categories:
syntax issues, e.g. naming, notation, convention; and semantic issues, e.g.
what is stored, where is it stored, and what does it mean?

There have been a number of attempts at schema level to define generic
models that can be used as the basis for semantic agreements between tools
across an application domain. A great deal of research is taking place in this
area, with “enterprise modeling and integration” being the phrase that unites
much of this work. To date, none of these generic schemata have achieved
wide success, although the IBM AD/Cycle Information Model (IBM, 1989)
and ISO Information Resource Dictionary Systems (IRDS) (ISD/IEC, 1990)
represent extensive efforts in this area.

Frameworks
A generic framework for CASE environments with all types of integra-

tion are presented in Brown et al. (1994), combined with the NIST/ECMA
Frameworks Reference Model (Brown et al., 1992) in a coherent manner. It
is the result of joint standardization efforts of ECMA (European Computer
Manufactures Association) and NIST (National Institute for Standardization
and Technologies). Similar architectures are discussed in Wasserman (1990),
Zarrella (1990), Thomas et al. (1992), and Olle et al. (1988).

According to Brown et al.’s (1994) description, the reference model is a
catalog of service descriptions spanning the functionality of a populated
environment. The service descriptions are grouped in various ways, either by
degrees of abstraction, granularity, or functionality. The highest level division
classifies services either as end-user or as framework services. The former
services include services which support the execution of a project directly.
These are the services that tend to be used by those who directly participate
in the execution of a project, such as engineers and managers. These services
are technical management, technical engineering, project management, and
support services. The latter services pertain to users who facilitate, maintain,
or improve the operation of the computer system, such as a human user
performing a tool installation task.

Dahanayake 5

Framework services form a central core with a potential relationship to
all other services in the environment. These services comprise the infrastruc-
ture of the environment. They include those services that jointly provide
support for applications, for CASE tools, and are referred to as ‘the environ-
ment framework.' It contains detailed descriptions of 50 framework services.
These services are classified as: object management, process management,
communication, operating system, user interface, policy enforcement, frame-
work administration, and configuration services.

The environment framework does not take into consideration that differ-
ent CASE environments have different facilities and categories of require-
ments. In addition, different CASE environments have their own way of
defining interactions between requirement categories. Although this frame-
work describes a basic architecture for standardization, its focus is more or
less on an inventory list of approaches (Dahanayake et al., 1992). It is not easy
to acquire exact requirements to describe a flexible architecture. It says little
about the requirements for integration at the semantic level (Brown et al.,
1992). In Brown et al. (1994), these deficiencies are discussed in terms of a
service-based conceptual model, and this suggests that it is necessary to
distinguish conceptual issues, the services, from implementation issues, and
stress the need for a design context, the process that the environment must
support. Then the integration can be regarded as the specification of which
services are provided by the environment, and how these services are related.

Even though actual environments show mixing of services and function-
ality, it is becoming more and more clear that the services tend to be a
relatively fixed set of infrastructure services needed for modeling environ-
ments, regardless of domain or tool content (Brown et al., 1992). From a
conceptual point of view, the capabilities of environments are referred to as
services, which are abstract descriptions of the work that can be done. The
separation of the ‘conceptual’ world of the model from the ‘actual’ world of
existing tools and environments is of fundamental importance.

The conceptual viewpoint provides an abstract description of the func-
tionality that may be found in the environment. An actual viewpoint would
describe a particular realization of the conceptual viewpoint in terms of
environment architecture with specific tools and standards. Figure 3 illus-
trates the distinction between conceptual service description and a set of
actual tools, many of which may overlap in their functional capabilities.

Summarizing this section, one can say that the information modeling
process needs to address issues involved in an integrated modeling environ-
ment, regardless of the available technology. The basic question, ‘What does
this environment do?’ can be answered when the services correspond to an

6 Computer Aided Method Engineering

abstract description of the functionality of the environment that is offered to
its user. The conceptual model as opposed to actual models, the service
descriptions, tends neatly to partition the functions of an environment. When
an actual environment is examined, however, these neat conceptual group-
ings are seldom found. Therefore, this functional overlap is the reason why a
conceptual model is necessary: one of the principle values is that it provides
a common conceptual basis with which to define problem-specific informa-
tion modeling environments.

TOWARDS A SERVICE OBJECT-BASED MODEL
In the field of information systems development, there is a strong belief

that an understanding of the information systems analysis and design process
is important before bringing up solutions. Information modeling is the process
concerned with in this study. Central to this process are the services available
to the users of an environment. The mechanisms are a way of implementing
services, and are concerned with the technology available and the techniques
that can be applied to connect different service components.

Opposed to this, the process encodes the set of goals of a project,
providing the context in which the services must be related. Figure 3 gives
an illustration of this interpretation.

When one wants to model an information modeling environment that has
flexibility to supporting arbitrary modeling techniques for analysis and design
activities, there is a need for a set of concepts, which guarantees this objective.
The service-based models offered so far have not succeeded in describing the

Figure 2. Relationship Between Conceptual and Actual Worlds

Dahanayake 7

required flexibility needed for analysis and design activities. It is evident that
to derive a list of services, one needs to have some form of a CASE
environment architecture to define the relationships between the main areas
of requirements. One possibility was to take a number of architectures of
existing CASE environments and then to see how far these could be combined
into one; this approach was partly adapted in NIST/ECMA. Another possibil-
ity is to use an object-oriented approach.

An Object-Oriented Service Model
A framework based on an object-oriented approach is presented in

Dahanayake et al. (1992). This service model is used to formulate the
conceptual model of an information-modeling environment that provides
method flexibility. It originated from the need to evaluate object-oriented
database support for systems engineering environments at SERC (Software
Engineering Research Centre) (Dahanayake et al., 1995). The approach is
advantageous, as the object concept allows modularity. When a model
increases in modularity, it enables a flexible architecture, which can be
modified more easily in view of maintenance and reuse of modeling tech-
niques.

Figure 3. Relationships Between Processes, Services, and Mechanisms

8 Computer Aided Method Engineering

The general idea is that a particular repository is a ‘configuration’ of
functionalities, where such functionality can be expressed as a service with its
associated concepts and behavior, called a ‘service object.’ Each service
object interacts with the world outside the environment as well as with the
other service objects around it. It is not necessary for each CASE environment
to offer all the services defined by this object model. Any actual CASE
environment has the freedom to decide on its service objects and its services.
The repository object is a configuration of service objects and gives the
capability to model the interfaces such that they satisfy the service users’
demands without having to redefine the service.

The Dahanayake et al. (1992) framework offers a good basis for discuss-
ing what functionalities a CASE environment must provide. It serves as a
starting point for obtaining agreement on what an ‘ideal’ CASE environment
would do in terms of the services it should provide versus other, less useful
approaches, such as defining its architecture or saying what tools it should
work with, or how it should be constructed.

Its application as a means of uniformly highlighting specific distinctive
characteristics of existing CASE environments is particularly useful in the
evaluation of such environments, and has been demonstrated in Dahanayake
et al. (1992; 1995). Figure 4 illustrates the major services of a CASE
environment engaged in information systems development activities. A
detailed description of the framework is available in Dahanayake et al. (1992).

The approach adopted here is to identify main CASE functionalities and
to evaluate their requirements and interactions and to see whether there is a
possibility to relate these, according to the situation in a particular CASE
environment. The major functionalities of a CASE environment can be
summarized as follows.

The services required for a systems analysis and designing environment
are rather complex. A CASE environment that supports systems development
activities has to support multiple development methods suitable for problem
situations. It needs a modeling service that is able to support a wide range of
methods. When such models are developed, they need to be stored success-
fully, and should be easily accessed and manipulated. The requirements of
this functionality are described by the storage and manipulation service. The
models and their represented data have to be consistent. For example, if a
designer removes an object type or adds a relationship type during the design
stage, consistent states have to be restored. It is necessary to have a reliable
integrity and consistency service. When the development team needs to use
different tools, they handle different views of the systems. It is necessary to
have a suitable view service to generate tools with their required modeling

Dahanayake 9

environment. This provides access to commonly used objects. An interface
gives all users of a CASE environment access to user interfaces. System
development is not possible without a user interface service. It is also natural
to have a distributed development environment. Such requirements can be
defined by a distribution service. When teams are working on different parts
of the system, it is necessary to have concurrency control and security
services. It is also necessary to have parallel developments of models. Then
there is a need for a capable version service. When teams are working with
different tools, they can share the same data; therefore, it is necessary to notify
any changes, what is called a control integration service. This gives a
summary of expected services from a CASE environment for information
systems analysis and design activities.

The object concept is used to define a major functionality as a service.
Therefore, the definition of an object is formulated as follows:

• An object consists of a unique identity, a number of properties, and a
number of actions. An action has an internal specification in terms of
assignment and interaction steps, which change the state of the object,
i.e., the value of its properties, and cause additional actions to be
executed.

Figure 4. Service Model of a CASE Environment

10 Computer Aided Method Engineering

Basic concepts for a CASE environment are defined using this object
model. This formulates an informal description of the framework's concept
and it constitutes the basis for further reasoning.

Repository Object: RO is a tuple (SO, UP, T)
• SO: Service Object is defined as an object describing an essential

functionality that abstracts the essence of a CASE environment in terms
of primitives used to describe a functionality and the associated actions,
to provide that functionality.
• SOP: Service Object Primitives is a collection of primitives a

service object supports in order to provide functionality. Each such
primitive defines what concepts are associated with it, independent of
other service objects.

• UP: User Primitive allows a user or a tool to invoke from the service
object the desired actions according to its need to enact activities.

• T: Thread is the manner in which certain services of service objects will
be involved to obtain the necessary action. The order in which such
service objects are activated is the Thread that provides the way a
particular repository implements a user-primitive.
The major information systems development functionalities of a CASE

environment are defined in Dahanayake et. al. (1995; 1992) using the service
object concept. The CASE environment is described as a configuration of
service objects, and each service object gives a detailed list of service object
primitives. The modularity of the service object is helpful in the identification
of the required functionality, and it provides opportunities to specify service
object primitives of varying degrees of priority to satisfy required CASE
environment services. Therefore, this approach presents a concept structure
for a generic framework to describe a CASE environment, to fulfill the
flexibility requirements.

In the following section this framework description is used to identify the
constituent of a CAME (Computer Aided Method Engineering) environment.

COMPUTER AIDED METHOD ENGINEERING
SERVICES

Information Systems Development (ISD) is a change process taken with
respect to an object system in an environment by a systems development
group using tools and an organized collection of methods to produce a target
system. The object systems are usually modeled using notations and tech-
niques, which are governed by the methods and supported by tools, which

Dahanayake 11

implement these methods and provide assistance in their use. To be able to
successfully model and define methods, one needs tools and techniques at the
method development level. These tools have to be capable of describing the
method concept structures and of specifying new tools that support methods.
These method development tools and methods together form a Computer
Aided Method Engineering (CAME) environment.

The scientific area of customized modeling support for information
systems development is popularly known as Computer Aided Method Engi-
neering (CAME). This area aims at the development of a flexible support
environment for information engineers engaged in information systems
analysis and design activities. By this, one means the stage where an
automated support environment has to produce the necessary information
modeling tools. The decisions influencing the type of method to be used for
a particular analysis and design activity are dependent on the problem area.
Once the modeling tools are available, the actual analysis and design takes
place. Therefore, there exists a distinction between putting together relevant
modeling tools to attain flexibility within the environment, and further
proceeding with actual systems analysis and design activities with these tools
(see Figure 5).

The overall functionality of the CAME environment is to provide the
services necessary to define the required modeling tools. The environment
should not only support different methods; it should also be able to support
the integration of models developed by these different modeling techniques.
Therefore, it is necessary for the environment to be able to support indepen-
dent modeling techniques in a consistent manner. The team should be able to
specify the analysis and design technique they want to use in an environment.
Therefore we use the framework given in Dahanayake et al. (1992) to identify
the basic services of a CAME environment.

Basic CAME Services
The concepts used to model the problem area plays a central role in each

description of a modeling tool.
Therefore, we need a suitable modeling service that can describe the

range of concepts used in analysis and design tools. When we develop
modeling tools, the data models developed by such tools need to be stored, and
such stored data needs to be accessed and manipulated. This explains the need
for a storage and manipulation service. When data is created, be it tools’
meta models or operational models, the consistency and integrity of such data
needs to be maintained. This service is called the transaction service. To
create different modeling tools, one needs an interface service to allow users

12 Computer Aided Method Engineering

access to user interfaces. Such user interfaces share different views of the
databases. Without a view service one cannot handle multiple modeling tool
facilities. This allows us to limit our attention to the services, modeling,
storage and manipulation, integrity and consistency, views, and interfaces,
which are considered to be the basic services that are important for our
research (see Figure 6).

The services distribution, control integration, security, concurrency control,
and version are as important to an environment as the services mentioned earlier.
Their contribution is more predominant when information engineers are actually
developing data models during the systems design phase. As the area of interest
is designing a CAME environment to provide an automated facility to design
problem-specific analysis and design tools, the design and generation of such
tools is the primary concern of this book.

SUMMARY
A theoretical view on information modeling environments and their

required flexibility is presented in the preceding sections. An informal

Figure 5. The analysis and design stage comprises method engineering and
systems analysis and design in a CAME environment

Dahanayake 13

definition of the key concept ‘service object’ is given. Finally, a CAME
service model using this concept to specify a flexible information-modeling
environment for analysis and design activities is outlined.

Various problems around systems development methods and CASE
tools are discussed. Today, information systems development activities need
the adaptation of automated support to problem situations. By this, one means
that information engineers should be in a position to define the techniques
they want to use within an automated support environment. By considering
CASE technology as a possible direction and directed attention towards the
information systems analysis and design stage of information systems devel-
opment.

This chapter explored the question, How can one describe a flexible
information modeling environment so that the concepts of the framework are
adequate to address the functionality of information systems analysis and
design according to a particular problem situation? Recent developments in
meta model-based repository architectures and the service-based framework
approaches induced to consider an object-oriented service framework to
specify the functionality of a CAME environment.

The concept service object to define the major functionalities of a CAME
environment in a consistent way is used. This is a crucial assumption,

Figure 6. Basic Services Relevant to Computer Aided Method Engineering

14 Computer Aided Method Engineering

therefore, recall the essential steps in reasoning. In the reasoning is identified
that the process of analysis and design could be used to set the goals of a
project and to provide the context in which services are to be supported. These
services have to represent major functionalities in a modular manner, to
provide the flexibility for the selection and definition of the necessary
primitives used in a particular modeling technique. These techniques are
referred to in a broader sense as methods in this book. Therefore, the concept
of object is used to define a service, which allows one to define the required
flexibility, using service object primitives.

CASE environments directed at the modeling and generation of specific
tools will be referred to as CAME (Computer Aided Method Engineering)
environments. An elaboration of the theory aimed at improving the automated
support for information modeling using tailorable environments for analysis
and design activities is given in this book.

REFERENCES
Brown, A.W., Carney, D.J., Morris, E.J., Smith, D.B., Zarrella, P.F. (1994).

Principles of CASE Tool Integration. Oxford University Press, New York.
Brown, A.W., Earl, A.N., McDermid, J.A. (1992). Software Engineering Envi-

ronments. Automated Support for Software Engineering. McGraw-Hill.
Brown, A.W., Feiler, P.H. (1992). An Analysis Technique for Examining Integra-

tion in a Project Support Environment. Technical Report CMU/SEI-92-TR-3,
ADA253351, Software Engineering Institute, Carnegie Mellon University,
Pittsburg, PA.

Dahanayake, A.N.W. (1997). CAME: An environment to support flexible infor-
mation modeling. PhD thesis, Delft University of Technology, The Nether-
lands.

Dahanayake, A.N.W., Bosman, J.B., Florijn, G. (1992). Requirements for
Software Engineering Environments Repositories. Technical Report, SERC,
Software Engineering Research Centrum, Utrecht, The Netherlands.

Dahanayake, A., Bosman, J., Florijn, G., Welke, R.J. (1992). A Framework for
Modelling Repositories. In Proceedings of the 3rd Workshop on NEXT
Generation of CASE Tools, Manchester, UK.

Dahanayake, A., Florijn, G. (1995). Evaluation of Object-Oriented Database
support for Software Engineering Environments. In Proceedings of the Soft-
ware Engineering Environments Conference, Noordwijkerhout, The Nether-
lands.

IBM (1989). Systems Application Architecture–AD/Cycle Concepts. First edi-
tion.

Dahanayake 15

ISO/IEC (1990). Information Resource Dictionary System Framework.
Jarke, M., Mylopoulos, J., Schmidt, J.W., Vassiliou, Y. (1992). DAIDA: An

Environment for Evolving Information Systems. ACM Transaction on Infor-
mation Systems, 10(1),1-50.

de Mey, V., Nierstrasz, O. (1993). The ITHACA Application Development
Environment. In D. Tsichritzis, Ed., Visual Objects, pages 265-278. University
of Geneva.

Olle, T.W., Hagelstein, J., Macdonald, I.G., Rolland, C., Sol, H.G., van Assche,
F.J.M., Verrijn-Stuart, A.A. (1988). Information Systems Methodologies: A
Framework for Understanding. Addison-Wesley.

Staring, W.R. (1989). Comparison of Information Engineering Facility (IEF) and
Information Engineering Workbench (IEW) (in Dutch). Informatie, 31(5),321-
408.

Thomas, I., Nejmeh, B. (1992). Definitions of Tool Integration for Environments.
IEEE Software, 9(3),29-35.

Verhoef, T.F. (1993). Effective Information Modelling Support. PhD thesis, Delft
University of Technology, Delft, The Netherlands.

Wasserman, A. (1990). Tool Integration in Software Environments. In F. Long,
Ed., Software Engineering Environments. Lecture Notes in Computer Science,
467, 138-150, Berlin, Germany.

Welke, R.J. (1988). The CASE Repository: More than another database applica-
tion. In Proceedings of 1988 INTEC Symposium on Systems Analysis and
Design: A Research Strategy, Atlanta, Georgia.

Welke, R.J. (1989). Meta systems on meta models. Case Outlook, 89(4).
Wallnau, K.C., Feiler, P.H. (1991). Tool Integration and Environment Architec-

tures. Technical Report CMU/SEI-91-TR-11, ADA 237810, Software Engi-
neering Institute, Carnegie Mellon University, Pittsburgh, PA.

Zarella, P.F. (1990). CASE Tool Integration and Standardization. Technical
Report CMU/SEI-90-TR-14, Software Engineering Institute, Carnegie-Mellon
University.

16 Architecture and Implementation Issues

Chapter 2

Architecture and
Implementation Issues

Ajantha Dahanayake
Delft University of Technology, The Netherlands

Historically the focus is on the theory of how problem-specific systems design
tools can be supported by a Computer Aided Method Engineering (CAME)
environment based on service object representation. To arrive at an implementation
model, the conceptual model of the service object representation must be
formalized. This theory is feasible when there is adequate computer support. Many
researchers have emphasized strongly that requirement specification languages
should have a rigorous formal basis; however, this need for formality has not been
generally acknowledged in the field of information systems development. Most
organizations and research groups tend to define their own methods using tech-
niques advocated within such methods that often have no formal foundation.
Discussions of modeling techniques are based on numerous examples, mostly using
diagrams and notational conventions, to provide a popular style for the definition of
new concepts and their behavior. In a CAME environment however, which gives
the freedom to specify a modeling technique from scratch, it is difficult to avoid
deficiencies such as inconsistency, lack of structure, over specification, incomplete-
ness, ambiguity, and redundancy without using a formal approach. In automated
support a formal model is used to provide stable specifications for implementation.
In fact, an implementation can be seen as another, enormously detailed formal
description, usually in an imperative programming language. To implement this
sophisticated automated support, formal specifications of the CAME service
description with adequate formal reasoning were derived earlier.

 In this chapter the concentration is on using representation formalism to

Previously published in Computer-Aided Method Engineering: Designing CASE Repositories for the
21st Century, edited by Ajantha Dahanayake. Copyright © 2001, Idea Group Publishing.

Dahanayake 17

construct a problem-specific CAME environment. Such an automated support
environment must be provided for the information systems design stage in particular
for the required UpperCASE tools according to the methods chosen for the
problem situations. The vision is that CAME environments must function as a
service-based, object-oriented MetaCASE environment that offers the services
required for modeling tools, and using a mechanism to interpret the required
modeling knowledge and changing the visual representation to the required form
using a graphic object binding mechanism. Further, this environment must offer a
mechanism for the populations of models specified according to such UpperCASE
tools.

According to the service description, a CAME environment consists of five
major services. Figure 1 provides a general architecture of a service object based
CAME environment that is able to support the activities of users. Two types of users
can be identified: one, the ‘method engineers’ that apply a meta model editor to
specify meta models of design tools according to problem specific design activities.

Figure 1: The general architecture of a service object based CAME
environment

18 Architecture and Implementation Issues

When the meta model of a particular modeling technique is ready, the method
engineer associates the required graphic representations to the concepts and
constraints using the graphic editor. The second type of user is the ‘information
engineer’ who uses UpperCASE tool editors to develop models of the problem
domain. The data models produced by UpperCASE tools are populated using the
population editor when an object base is required. Such populations are the
operational models of the required information system (see Figure 2).

The structure of the CAME environment is determined mainly by the structure
of the meta model editor. The basic service objects of the CAME environment
form the schema description layer of the object base. The meta models that describe
the process and product knowledge of modeling techniques constructed by the
meta model editor form the schema layer of the object base. The data models
constructed using UpperCASE tools according to the graphic representations
specified by the graphic editor form the data model layer. The data models’
associated populations constructed using the population editor form the operation
data layer. An evolutionary development strategy was chosen during the develop-
ment of the CAME environment; the required functionality is added gradually at the
appropriate stages. The first stage is to design and develop a meta model editor
which forms the core of the environment and then to expand the environment
gradually with a graphic editor and a population editor (see Figure 2).

The CAME environment prototype implemented in NeXTSTEP/Objective C
is used in this book to highlight the architectural and implementation issues. This is
the NeXTSTEP environment normally found on the NeXT workstations of Intel-
based PCs, and it is a complete object-oriented environment built on Unix.
NeXTSTEP supports object-oriented programming principles and is centered on
the concept of objects using Objective C language. NeXTSTEP can be seen as a
sophisticated object-oriented development environment. It embodies three pre-

Figure 2: The main support functions of the service object based CAME
environment and the prototype development strategy

Dahanayake 19

ferred major components for such an environment, namely: a library of software
kits, a set of development tools, and an object-oriented language. NeXTSTEP is
provided with an extensive library. It includes several software kits which can be
used to create or adapt your own objects. These kits include, among others, an
application kit for building graphical user interfaces, and an indexing kit for
interaction with standard index structure database server.

The selection of an object-oriented development approach is not surprising
when one is trying to implement an object-based description of a CAME
environment. The approach adopted is used to distinguish conceptual modeling
consisting of object modeling and interaction modeling, user interface modeling,
implementation modeling, and programming activities. These activities are per-
formed in an iterative top-down fashion. The existing set of object classes is taken
as the starting point in each iteration cycle. During implementation modeling the
results of conceptual modeling and interface modeling are translated into class
definitions of an Object Oriented (OO) environment. This results in a class tree
together with pseudo code definitions of each object class. These class definitions
are implemented subsequently in the OO programming environment as part of the
programming activities. This design and development approach is similar to the OO
systems analysis and design methods, which increase incrementally the functionality
and structure of the system in implementation. Further, this design has the capability
to generate method-specific UpperCASE tools according to problem situations.

The remainder of this chapter is organized as follows: first is an elaboration on
the functionality of a CAME environment followed by the architecture of the CAME
environments meta model editor, in which meta models of UpperCASE tools can
be specified according to this theory is given. Then follows the architecture of the
population editor, which populates data models according to tools, which are
generated for the problem situations and based on a meta model or the modeling
knowledge of the technique associated with the design tool. The architecture of the
graphic editor is followed by a summary, and conclusions end this chapter.

FUNCTIONALITY OF THE CAME ENVIRONMENT
According to this theory the CAME environment supports the construction of

UpperCASE tools. First, it is necessary to define the meta model associated with
the modeling knowledge of a technique required according to the problem situation.
Secondly, the required tools for the information systems design process have to be
generated according to the defined meta model. Once the tools are available, the
real information systems design process and the population of the data models will

20 Architecture and Implementation Issues

take place. The main modules—the meta model editor, the graphic editor and the
population editor—primarily describe the functionality of the CAME environment
which supports the generation of specific UpperCASE tools as required for
problem situations. These modules need to communicate and interact to function in
the required manner. The user interface of the environment has a considerable
influence on the object types’ interrelationships and interactions; therefore, first the
user interface of the CAME environment is taken into account using the simple
prototype to explain its functionality.

The user interface of the CAME environment is based on layers of interfaces.
The highest layer, called the MAIN, allows the user to communicate through menus.
When the MAIN is started, a menu will appear on the screen with some items to
choose: Repository, Population, Representation, Hide, Quite, etc.; an example of
a MAIN menu is given in Figure 3. If the user chooses
a command from a menu where the command name
ends with an arrowhead, the MAIN will prompt the
user to obtain more information. The items popula-
tion and representation give access to the popula-
tion editor and graphic editor, respectively. The
Repository item gives access to the meta model
editor. The informal module structure of this CAME
environments’ MAIN shell is given in Figure 4, where
METAED, GRAPHICED, and POPED represent
the underlying modules of the meta model editor,
graphic editor, and population editor, respectively,
and the gray lines are used to represent the communi-
cation paths.

The discussion here will focus on the functionality
of the meta model editor, population editor, and the

Figure 3: The MAIN
Menu of the CAME
Environment

Figure 4: The Module Structure of MAIN and its Underlying User
Interfaces

Dahanayake 21

graphic editor.

The Meta Model Editor
The meta model editor forms the kernel of the CAME environment. The

service object model forms the functional specifications of the meta model editor
of the CAME environment. Figure 5 shows the important functional separations that
are embedded according to this service description.

In the remainder of this subsection, we focus on the functionality of the meta
model editor that must support the construction of meta models. To do this, the meta
model editor requires the following services:

• The Modeling Service Object specified as:
• a meta model base

Describing mainly the services of the modeling service object. The meta
model base consists of an OS_basis providing the object structure and
graphical constraints for designing a meta model, and an OS_editor to
verify the population derivation rules for a specific meta model according
to syntax rules of object structure populations. Figure 6 represents the
interactions and the informal module structure of the main modules of the
modeling service object.

• The Storage and Manipulation Service Object specified as:
• a central repository that stores all data of the Meta model editor. This

central repository should supply a simple store-query-add-delete-read
mechanism providing facilitates for the developed models and modeling
components to be stored and manipulated. The non-graphical constraints

Figure 5: The Main Functional Separations of the Meta Model Editors’
Architecture

22 Architecture and Implementation Issues

Figure 6: The Module Structure of the Meta Model Bas

are not used at this stage of development, and have restricted the main
concern to the populations of object structures; therefore, one only need
the storage and manipulation structure interpretation that is relevant to
the object structures and their complex data structure populations.

• The transaction Service Object specified as:
• An application control base will supply access to the repository in a

methodically correct way. Specifically, it will check the pre and post priori
rules of a technique by communicating with OS_editor, and initiate
transactions providing the Integrity and Consistency to incorporate the
information passing process required for the developed meta models to be
stored and manipulated. The Transaction Structure required for the
process of information passing is explored in the underlying transaction
model of the platform where the CAME environment will be implemented.

• The Interface Service Object specified as:
• a graphic base

Describes mainly the service of the interface service object. The graphic
base consists of a graphic_basis providing graphic structures and
graphic constraints and a graphic_editor in a similar fashion as found in
meta model base. A graphic user interface to edit and modify all types of
meta models is called a Diagram Editor (DED). A DED will provide this
graphic interface to an OS_editor. Since the OS_editor already takes care
of methodical constraints, DEDs need to be concerned only with the
graphic structures and graphic constraints, and the mapping of user

Dahanayake 23

Figure 7: The Main Objects that Define the Character of the User
Interface

actions to the associated OS_editor to provide user interface service. A
graphic_basis and a graphic_editor are introduced in a similar fashion as
for a modeling service object for this purpose. This also explains the
separation of modeling concepts from their graphic representations during
meta modeling to allow a modeling concept to appear in the required
graphic form. The interactions and the informal module structure of the main
modules of the user interface are given in Figure 7.

Figure 8: View Representator and its Position with Respect to the Other
Modules

24 Architecture and Implementation Issues

• The View Service Object specified as:
• a view representator

Allows the components of meta models as well as fragments of meta
models to appear in different modeling techniques. It represents view
structures of view service object to create multiple representations of
object structure populations in relation to UpperCASE tools, and to relate
them to the underlying meta model of the modeling technique in the required
manner. The view representation is illustrated in Figure 8.

The Population Editor
The population editor supports the population of meta models as well as data

models. The population editor extends the kernel service of the meta model editor
to support the generation of populations within a CAME environment. The services
that are part of the population editor have to interact with the kernel services to
function in the required manner. There are a number of extensions required for all
these interactions to help the user to generate UpperCASE tools in an easy way.
The important functional extensions required to extend the meta model editors’
kernel description are discussed in this section.

For the population of such schemas, the population editor requires:
• extension to the Repository to provide:

• An object browser
An object browser gives access to all objects in the active repository
defined under a meta model by following certain paths. This is similar to
path expressions. This enables a user to select the required object types
to be populated.

Figure 9: Populatable Object Types and Population Managers

Dahanayake 25

• A population manager
An object PopManager is introduced to store an object’s population and
to provide access to it. This can be seen as the Store mechanism. Each type
of object that may be populated has its own type of PopManager (see
Figure 9), because each type of object needs different services from its
PopManager.

• extension to the graphic base to provide a number of graphic objects:
• Pop editor

An editor that allows the user to add instances to database populations.
• Add instance dialog

To provide basic update interactions.
• extension to the application control base to provide:

• Population Manager Control Meeting Point
An object PopManContrMPoint to take over the transactions required
during the information passing process.

• Instance Validation checker
To maintain pre and post conditions for the consistency management
according to population derivation rules.

The Graphic Editor
The graphic editor supports the binding of visual representations of the meta

model components to the necessary representational requirements to arrive at the
required modeling technique, specified according to the requirements of the
problem situation. This stage involves the generation of UpperCASE tools. For this
purpose the graphic editor requires:

• extension to the graphic base to provide a number of graphic objects:
• Library of graphic objects

To select the required graphic representations according to the specifica-
tions of the modeling technique.

• Edit representation
An editor that can be used to select the required meta model of the
UpperCASE tool.

• Select representation
An editor to select and bind graphic objects to the modeling concepts
described under the meta model of the modeling technique.

• Draw representation
To select the required UpperCASE tool and to assign a name.

• Diagram Editor

26 Architecture and Implementation Issues

An editor that acts as the required UpperCASE tool editor.

THE META MODEL EDITOR
The theory that describes the functionality of the meta model editor is feasible

only when it is implemented in a programming environment. In this section the focus
is on the architecture of the meta model editor. The object model of each module
discussed under the functional description of the meta model editor provides the
important architectural building blocks that are required for this purpose. Figure 5
shows the important functional separations that are embedded in the architecture.

 Architectural Issues
 The object model of the meta model base consists primarily of object structure

components and graphical constraint components. The object model consists of
object types bearing the same name as the component (system) being modeled.
This is such that a component can be considered to be an instance of an active object
class that exchanges messages with other components, as well as something that has
static relationships with other objects.

The object model of the repository consisting of a schema description layer (or
service object descriptions) and a schema layer, will be referred to as the repository
object. The repository will register any instance of object types derived from the
meta model base. Figure 10 shows part of the object model of a repository. The
relationship registration is filled by sending a register message to the repository.
Each instance of object type is required to know the name of the class of which it
is an instance. This allows the repository to handle queries that include class
information.

Figure 10: Part of a Repository

Dahanayake 27

An active repository extends a repository by adding messages, which may be
sent by a Diagram Editor (DED). These messages are "subscribe" and "un-
subscribe". A DED subscribes to an object when it has at least one representation
of that object. Similarly, it will un-subscribe from an object when it no longer holds
any representation of that object. Active repositories require extra administration.
Each subscribe message results in the creation of a subscription relationship
instance. An active repository keeps track of all the subscriptions it has created (see
Figure 11).

The object model of the meta model editor's graphic base or the user interface
is a three-layer module structure. In this module structure there is one main object
for each layer of interfaces, i.e., the Meta Model Editor (METAED), the Group
Editor (GED) and the Diagram Editor (DED). The METAED layer is the highest
layer of the meta model editors’ user interface. The DED is the actual diagram
editor. At this point an additional editor is introduced between the METAED and
DED: the Group Editor (GED). A GED provides access to a number of DEDs of
the same type, e.g., a number of meta model editors. This allows a user to keep

Figure 11: Additional Administration for an Active Repository

Figure 12: Overall Class Tree of the User Interface

28 Architecture and Implementation Issues

short-cuts to frequently used diagrams or to have several different diagrams
organized in a group. A GED is a DED restricted to show icons that represent DEDs
instead of general graphic objects.

The kernel model of the system is extended by a visual and a controller
component according to the model view control principle as introduced in Smalltalk
(Goldberg, 1982). Visual object is used to refer to a view in the model view control
principle, as it is misleading to use view here alongside the concept of view given
in this book. These components can be described in terms of editors as follows:

• Model: This object represents the internal data of the DED. It is responsible
for altering internal data held by the model, which may in turn activate an
update message.

• View: The visual object handles output to the screen, which is a visual
representation of the models’ data. The different control objects are contained
in the visual object to allow users to modify the access data.

• Controller: The controller object processes user input. Every user action
corresponds to a modification of a visual object. These actions are translated
by the controller object into specific action messages, which are sent to the
model.
 Figure 12 represents the overall class tree of the user interface. Figure 13

shows the interactions with the active repository along the editor hierarchy.
The interaction of the main modules of the meta model editor plays an

Figure 13: Editor Hierarchy and Interactions with Active Repository

Dahanayake 29

important role during the design of the CAME prototype. The overall interaction
model of the meta model editor is given in the Figure 14. The solid arrows represent
message flows and grey arrows correspond to control flows. In this figure a number
of new objects are visualized together with the main modules and objects discussed
under the functional model of the meta model editor. The position and role of all
these components will be explained when appropriate.

DEDs need their own administration to keep track of the representations of the
objects in the repository. Since a DED is an abstract concept, the representation
type it will handle also needs to be abstract. Therefore a generalized graphical
object type (graphic object) is introduced, which plays a basic role for the
representation of view types of all concrete graphical editors. Figure 15 shows the
representation relationship. Not all graphic objects are generalized objects,
because the repository will store any instance of a type that is eventually generalized
to object (or, in OO terms, the type is derived from object), and this allows the
DEDs to store representation data in the repository. The representation relationship
type object acts on behalf of the view representator.

At this point it is necessary to discuss the application control bases’ function
on different editors or objects. A controller object called Application Controller is
introduced. This object is unique for each session, i.e., there is always only one
Application Controller object active no matter how many repositories are open. Its
main task is to provide the user with a means to create, open, and perform other
functions on repositories. It also initializes some other objects, which are necessary

Figure 14: Overall Interaction Model of the Meta Model Editor

30 Architecture and Implementation Issues

for the DEDs. The Application Controller object maintains a list of active
repositories and is connected to the MAIN of the user interface via each
corresponding repository.

First of all, DEDs, METAEDs and GEDs must store their interface information
somewhere to keep it available across working sessions. The obvious storage place
is the repository. This way, a repository keeps a record of a complete working
environment. A repository may receive three kinds of messages. The first two,
register and unregister, add an object into the repository and delete an object from
the repository, respectively. The third message, query, asks the repository to return
a list of objects satisfying a specified condition.

The object OS_editor is used to validate requests and to determine conse-
quences of manipulations. The outcome of these calculations is used to keep the
repository consistent. All the information the OS_editor needs to perform this task
is stored in the repository. Therefore it only needs to know the repository. The
METAED on the other hand needs to keep track of the OS_editor, all active DEDs,
GEDs, and the repository. This leads to the object relation model given in Figure
16.

Only an OS_editor should (un) register objects, as they are responsible for the
consistency of the repository. Both the OS_editor and DEDs can query a
repository. To enable a DED to be notified about changes, it recognizes the
message update and withdraws. An active repository will send an update message
when it has determined a change in an object subscribed to by the DED. When such
an object is removed from the repository, the repository will send a withdraw

Figure 15: Administration of Objects Visualized by a Diagram Editor
(DED)

Dahanayake 31

message.
The creation of objects is done through OS_editor. Since object creation can

require any number of parameters, it cannot be solved generically by an OS_editor.
Each Object type that an OS_editor manages therefore requires its own creation
message. An advantage of this explicit handling of instance creation of each object
type is that it provides a good point to do prior checks on the operation. Deletion
can be handled generically by an OS_editor and is done through the delete message.
Every layer in the user interface (METAED, GED, or DED) is updated to the
repository separately. This became necessary because it is not necessary to update
the whole user interface hierarchy to the repository. For example, a simple update
of the title on the name panel of DED undergoes the message chain between DED
and repository, but in the case of changing the name of GED-icon, it carries a whole
set of messages way down to the last layer.

 The object model of the meta model editor's overall design is given in Figure
17. Note the new concepts, which are introduced solely to explain the gradual
extension of data and functionality. A window just shows some graphic objects. An
editor actively manages the representation relationship of these graphic objects by
subscribing to the represented object. An icon is just a picture representing
something; a named icon adds a name to this picture. A DED_icon limits the things
the named icon can represent to DEDs. Likewise, a GED_icon limits representation
to GEDs.

Meta Model Editors’ User Interface
An overview of meta model editors’ user interface is provided in Figure 18.

The Repository item is for the opening of the meta model editor, which activates the
Repository sub menu. A window will appear for initialization of a repository file for
the meta model. Once a repository is created it gives access to the underlying
interface structure of the meta model editor.

Figure 16: Relations METAED Have to Maintain

32 Architecture and Implementation Issues

Figure 17: Overall Object Model of the CAME Environment

Apart from creating and opening a repository, the sub menu items provide two
other facilities: Snapshot to make a back-up of an opened repository, and Delete
to select a repository file from the disk to remove it completely. After creating a new
(New) or opening (Open) an existing repository, the METAED window shown in
Figure 18 appears; this is the top-most interface layer of the meta model editor. The
repository item allows more than one repository to be opened at any given time.

On the top of the editor pane appears the window title = ‘pathname’ + editor
title. The top part of the METAED window shows the type of the next level editors
and an image to indicate the METAED. There are two types of editors that can be
activated, Object Structure Editors (OSE) and Task Structure Editors (TSE). The
TSE will be not discussed here, because only the OSE is required at this stage to
develop meta models and to describe the functionality of this CAME environment.
A Group Editor (GED) can be created by dragging and dropping the OSE_icon on
to the bottom part of the repository window. Otherwise an available OSE_icon can
be highlighted, to open a GED. Figure 19 presents a part of the object model of the
METAED user interface. The METAED contains a number of icons, and each icon
represents a GED instance.

Dahanayake 33

The group editor
Group editors manage a number of diagrams. A diagram is for example a

schema defined in object structures. Each diagram is edited through a Diagram
Editor (DED). When an OSE_icon opens a GED, a window appears as in Figure
18. The title bar contains a name that identifies the kind of GED and a name that is
the same as that of the icons in the METAED window. Under the title bar is a
GED_icon and an image for identifying GEDs. This GED_icon gives the user

Figure 18: The Meta Model Editor’s User Interface

Figure 19: Object Model of METAEDs’ User Interface Parts

34 Architecture and Implementation Issues

control over the GED. The drag drop facility creates a new DED in the scrollable
area where the active diagrams are represented by an icon. A name uniquely
identifies each icon. The user communicates with a GED through icons. The drag-
drop of a GED_icon generates a unique message to the GED to generate new
diagrams, a DED_icon. A double click on a DED_icon opens a diagram editor.
When the user clicks on the name of the diagram icon, the GED gets the update
message followed by the new name as input from the user.

 From the discussion above it is clear that DEDs, GEDs, and METAEDs have
much in common. In fact, a METAED is a specialized form of a GED. GEDs are
specialized DEDs. Therefore, the object model of GEDs generalizes a METAED’s
object model. Figure 20 shows this model in which some extra constraints are
needed: a GED icon represents a GED, a GED may only show DED icons, and
METAED may only show GED icons.

The diagram editor
The user interface of a DED, shown in Figure 18, is much the same as the GED

user interface, except that it’s scrollable area may contain any graphic object. The
only difference between a DED and a GED is that DEDs must know the OS_editor
they must use to manipulate the repository. The DED communicates with the user

Figure 20: Object Model of the GED and METAED User Interface

Dahanayake 35

by means of buttons, Pop Up Menus, and dialog boxes. The Pop Up Menus appear
usually when the right button is held down. What particular Pop Up Menu appears
depends on the position of the mouse cursor. If the cursor is positioned over an
object, a Pop Up Menu specific to that kind of object appears.

A button item can be selected by holding the mouse button down, putting the
arrow over the desired item, and then releasing the mouse button. After an item is
chosen, for example Entity, it can be positioned on the diagram editor; a window
for selection or for entering the name normally follows. Some items have their own
sub menus, and they appear automatically when the mouse cursor is placed over
such an item. Selecting an item from one of these sub menus is done in the same way
as selecting an ordinary item. If the editor needs information from the user to perform
the selected action, one or more dialog boxes appear. When the mouse cursor is
positioned over the dialog box, the requested information can be entered by typing text
and/or clicking on a button.

To add graphical constraint a special button is available in the DED. When
clicked on it this button will be highlighted. To select the required constraint, a Pop
Up Menu below the constraint button has to be dragged on to the desired constraint.
After a constraint is selected, it can be added into the schema by clicking on the
position where it should be added. Constraints are connected to the role it relates
to by dragging a line using the left mouse button. If it drags to an incorrect role, it
will not be connected. A double click on the constraint checks if the current
population satisfies the constraint. A panel appears allowing a user to perform some
operations on the constraints.

Implementation issues
An important realization of the meta model editor is in the implementation of

the DED which handles the separation of modeling concepts and visual aspects of
objects which are described as graphic structures. Each object has one modeling
concept associated with it, and can have any number of visual representations. The
visual representations, which are called graphic objects, know which modeling
concept object they are associated with, and this enables them to handle changes
to the object. To keep the visual aspects and modeling concepts consistent with
each other, a list of mappings is kept in a central place. If one visual representation
changes the state of the modeling concept object, this change is forwarded to all
other visual representations.

When a user opens or creates a DED, a window with the graphic_editor
appears on the screen, which is the top-most module. This is used to implement a
major part of the user interface, and to control most of the interaction with the user.

36 Architecture and Implementation Issues

The creation of a new object type for example, is handled by the graphic_editor.
The graphic_editor sends a message to the OS_editor, which performs the actual
creation of the new object type. The graphic_editor stores global data about the
visual aspects of the object structure it maintains. This data consists of a reference
to the OS_editor that handles the modeling concept side of the object structure, the
visual to modeling concept mapping mentioned above, and an administration of all
visual objects. The need to store the OS_editor is self-explanatory. The mapping
is used to pass relevant information along from the user to the conceptual
counterpart, which interacts with the visual objects. It is also used backwards: if a
modeling concept object is destroyed, all associated visual objects will also be
destroyed. The administration of all visual objects is used to save and load complete
object structures; a visual representation of this is presented in Figure 21.

OS_editor
The OS_editor is the place where all data about the modeling concept objects

is stored. It is responsible for the consistency of all data, and can provide derived
information. To do this, the OS_editor has procedures to create new objects, to
retrieve or to destroy existing ones, and to derive information.

The OS_editor can provide the following derived information:
• The pater familias of a given object
• Whether or not a given object may be generalized or specialized

The OS_editor knows which objects are part of the object structure at hand,
and is able to derive some information about them. Therefore, to describe the object
Structure completely, additional information is needed. For example, it is not
enough to know that role A is part of the object structure; it is also necessary to

Figure 21: DED and its Underlying Interaction Modules

Dahanayake 37

know which (if any) object is its base, and in which relationship type it is contained.
This kind of information, the structure of the model, is kept in the conceptual objects,
which are subclasses of OS_basis.

Controller objects
The user communicates with the program through DEDs. When the user wants

something which effects a conceptual object, the DED sends a message to the
OS_editor. Creation and destruction or deletion of a conceptual object is done
though an OS_editor. Creation and deletion of visual objects or graphic counter-
parts of conceptual objects is done through a DED, consisting of an object Ose
Controller and an object graphic_editor. In the tool, only one OS_editor is
required. Several DEDs can be opened or created. A Repository Controller
creates an OS_editor when the user opens or creates a repository. Repository
Controller passes the OS_editor to the Application Controller. The Application
Controller, when opening or creating a DED, passes this OS_editor to the Ose
Controller.

 OS_basis and graphic_basis
The OS_basis and graphic_basis trees capture the structure of the meta model

that is being edited. All object structure concepts have a counterpart in OS_basis
and graphic_basis trees. The structure that is kept in the OS_basis object is
manipulated by the OS_editor, while the structure contained in the graphic_basis
objects is manipulated by the graphic_editor. The OS_basis hierarchy of object
structures, where a similar graphic_basis hierarchy exists for its counterparts in
graphic structures, is given in Figure 22.

Specification of graphical constraints
The graphical constraints are introduced in a similar fashion to object struc-

tures, to enter and administer graphical constraints. The graphical constraints differ
in three points: syntax, semantics, and graphic representation. This consists of
extensions to the OS_basis and graphic_basis, and some additions to the OS_editor
and the graphic_editor. OS_item is the super type of all object structure object
types, and this OS_item is taken as the root of the extension tree of constraints.
OS_item handles all required administrative functions, such as access to the
OS_editor. OS_constraint is an abstract type upon which all constraints are based.
To determine the subtypes of OS_constraints, all constraints are compared and
their requirements are matched. Based on this matching, groups of constraints are
distinguished (see Figure 22).

38 Architecture and Implementation Issues

An important criterion is the type of object the constraints are allowed to
associate with. This is created by generalizing constraints into six groups and adding
a group type resulting in a hierarchy tree as shown in Figure 23. This distribution of
constraint types over abstract super types allows a maximum shearing of proce-
dures and data. For example, all standard constraints use the same procedure that
associates the constraint with a set of roles, whereas the collection type constraints
share the procedure that associates the constraint with a concept type or collection
type.

The structure of the extension of the graphic_basis tree is the same as the
structure of the extension of the OS_basis tree. These extensions implement the user
interface and handle the visual representation of constraints. The extensions consist
of procedures to create, store, and retrieve objects of type graphic_constraint and
OS_constraint. These procedures are analogous to the existing procedures that
handle all other object types of object structures.

The final implementation model is obtained after applying the transformations
for generalization and specialization to the object models so far discussed, retaining
the functional separations according to the theory formulated in previous chapters.
The detailed class trees are not included here, as most of them have been already
explained in detail.

THE POPULATION EDITOR
The functionality of the population editor is given above. In this section the

focus is on the architecture of the population editor. The important architectural
building blocks that are required for this purpose are put forward in the following
section.

Figure 22: OS_basis Hierarchy of Object Structures

Dahanayake 39

Architectural Issues
This section describes the extensions needed for the administration of popu-

lations. In the first case the object model of the repository is extended with an extra
object PopManager which is central to maintaining the relevant populations, and in
the second case the object model of the graphic base is extended with a pop editor.

Figure 23: Resulting Graphical Constraint Hierarchy

Constraint kind Connects to
Standard 1 set of role

set 2 sets of roles
collection concept or collection type
subtype entity type

enumeration concept
schema set of concepts

 Constraint types and their allowed connections

40 Architecture and Implementation Issues

Thirdly the extensions required for the application control base will be discussed
under the object PopManContrMPoint.

The interaction between objects are concerned with the adding of an instance
to the population of an object which causes interaction between the PopManager
and pop editor. The scenario is triggered by a graphic_object, which sends a
message to its associated OS_object to edit its population. The OS_object creates
a pop editor, which handles the actual adding of a new instance by telling the
PopManager to add an instance to the population of OS_object which is kept in
the PopManager. The PopManager creates a dialog box, the user enters the value
of the new instance, which is then retrieved by the PopManager and propagated to
the pop editor to keep the display up to date: Figure 24 provides a general
interpretation of this description. There are four objects of concern when interfering
with populations; this is visualized in Figure 25.

The PopManager is an object that stores a population and provides access to
it. Each type of object that can be populated has its own subtype PopManager,
because each type of object needs its different services from the PopManager. For
example, the PopManager of an entity type must propagate the value of new
instances to objects higher in the generalization hierarchy. The general interaction
model relating to population generation is shown in Figure 26.

The PopManager is the actual abstract data type and is continually saved to
and restored from disk. Instead of direct communication with the PopManager, all
communications are handled by a central Population Manager Controller Meeting
Point (PopManContrMPoint). This PopManContrMPoint provides an easy inter-
face to the PopManager by handling all disk access transparently. Further this
object is guaranteed to have only one instance per population on disk. The
PopManContrMPoint is also responsible for keeping the population consistent by
communicating with the OS_editor. The population derivation rules are used to
make sure the population is consistent if the schema is consistent. PopManager
Controller is the actual object that most of the graphic base objects will use to
interface to populations. The PopManager Controller inherits the relevant methods
and data from PopManager and from OS_object. Due to the technical impossibility
of implementing multiple inheritance directly we have introduced
PopManContrMPoint to take over this responsibility with the help of a forwarding
mechanism. Figure 27 shows an interpretation of the PopManContrMPoints role
in relation to communication and interactions with other object modules.

The main purpose of PopManager Controller is to provide groups of related
user interfaces as an easy way of keeping the overall graphic base consistent. In
addition to this, PopManager Controller provides a means to have an active

Dahanayake 41

Figure 24: Interaction Model of the Adding of a New Instance

Figure 25: Population Related Objects

Dahanayake 43

Selecting an object
The population editor first gives the object browser to select an object that will

eventually be populated. The object browser is supported by a Choose Object
window (see Figure 28) which shows a list of all objects in the active repository from
which the population can be edited. All object types are populated in the same way.
An object can be selected by clicking on an object name or, if required, the whole
action can be cancelled with the use of the Cancel button, which returns the user to
the Population sub menu and enables the Edit Population button. The pop editor is
opened by clicking on the edit population, and this forms the main part of the

population editor's user interface. The pop
editor and add instance dialog windows are
updated automatically when a new object is
selected.

Pop editor
The pop editor consists of a scroll view

showing the instances and two buttons to
edit the population. At the top of the scroll
view is a bar with the titles of the column of
instances. The title of the first column is the
name of the current object because it never
contains instances defined in another ob-
ject. If a collection type is being edited, the
second column shows the name of the
element object. In the case of a relationship
the names, of the roles are shown.

 An instance can be selected by clicking on it. In the case of a relationships or
an entity, the entire instance is selected. A set can be edited by selecting one instance
by clicking on the element, the second column of the instance, or an entire set by
clicking on the set, the first column. An instance can be de-selected by clicking on
it again.

The Delete button in the pop editor window can be used to delete instances
from a population of an object. It is disabled if nothing is selected in the scroll view.
If the user is not allowed to edit a population, this button is disabled. Deletion of
instances may have an effect on the populations of other objects that are connected
to the object that the instance was removed from, for example, generalization,
specialization, relationships, and collections. Instances related to these instances

Figure 28: Population Editor's
Access Menu and Object Browse

44 Architecture and Implementation Issues

will be deleted, and the population will be updated automatically.
The ‘add instance dialog...’ button can be used to add instances to a

population. When a user is not allowed to add instances to population, this button
is disabled. If a valid instance is entered, a new instance will be made above the
currently selected instance, or at the bottom of the list if none is selected.

When the object concerned is a collection type, there are special rules included
for positioning the add instances activity. When the whole set is selected, the
instances will be added at the end of the currently selected set. If an element of a
collection type is selected, an instance will be added in front of the selected instance.
A new collection can be created by not selecting anything. The action of the ‘add
instance dialog’ will add a new set at the end of the list.

Add instance dialog
The add instance dialog window lets the user add new instances to the

population of a selected object. Often the names of these instances are created
automatically. The user has to enter the chosen instances from other objects that
form the elements or roles of the object which are being currently editing. A newly
created instance is added to the population using an ‘add to population’ button, or
by pressing enter after entering the last column. The add instance dialog is updated
automatically when a new selection is made in the pop editor.

Implementation Issues
The population editor supports the development of operational models by

generating instances to the objects defined in the meta model editor. Once the meta
model is ready, the UpperCASE tool can be built around it, by knowing the overall
structure of the CASE tool and using the interface to the population database. There
are several important elements; the first is dealing with repositories. These are the
actual files that contain the data of one project. This data includes the abstract meta
models, including their populations among other data. The required CASE tool
must be able to add its data, such as graphic representations, to the repository. It
should also be able to make a distinction between a populated repository (project
file) and an empty one, which can be loaded when a new project is started.
Secondly, the UpperCASE tools must be able to deal with the populations of
relevant object types, i.e., entity, label, collections, sequences, relationships, and
schemas, in the meta model, which actually represent the design that is made by a
future user of the UpperCASE tool. In fact the following groups of interactions must
be performed by the UpperCASE tools built around the meta model editor:

• Provision of a mechanism leading to Loading and Saving repositories, carrying

Dahanayake 45

the capabilities of the Store mechanism
• Using the knowledge of the meta model to link the repository to the relevant

parts of the UpperCASE tool model
• Interfacing with population, leading to Update, Assign, and Query

We will first introduce these interactions as they form an important part of the
storage and manipulation activities. Then we will give a brief summary of the
important issues concerning interfacing to populations and managing of populations.

Loading and saving
The Application Controller and Repository Controller objects are of impor-

tance to load and save repositories. The Application Controller provides a higher
level interface which handles the opening of the required object files and puts
requesters on screen to ask the user which repository they intend to use. Repository
Controller provides the internal interface which handles the access to the repository,
by keeping a list of open DEDs, and taking over the opening and creating of the
repository.

Retrieving the meta model structure layout for interfacing
Since we decided to make use of the available facilities of the platform for data

manipulation, the following is considered:
• To get a list of all objects as the same kind of the meta model, one can obtain

the list in the form of an IXpostingList from the repository. The way to do this
is :

 positionList = [repository queryClass: obj_GetClass(“TheClass”)]
• or alternatively to get a list of different objects:

positionList = [repository queryClass: [TheClass class]]
• simply to append additional lists to the former is done in the following way:

positionList=[appendList:[repository queryClass:[OtherClass class]]]
Once the lists are obtained from the repository, one can use them to access the

objects on the disk. Alternatively, the name of an object at a certain position can
be obtained. For further understanding of how the indexing kit works, see NeXT
Publications.

Editing populations
There are three basic categories of operations, namely delete, add, and read

for editing populations. In PopManager, PopManContrMPoint, and in PopManager
Controller, there are methods to add or delete instances. Most of the read methods
are particular to PopManager and PopManContrMPoint, but are accessible via the

46 Architecture and Implementation Issues

PopManager Controller due to a forwarding mechanism. Usually the user interfaces
should only use PopManager Controller to edit populations.

The functionality is distributed across the hierarchy in the following way. At the
bottom level there is the PopManager which is the actual abstract data object to be
edited. It does some syntactical and semantic checking and basically adds or
deletes instances to or from the population.

On top of that lays the PopManContrMPoint, the main purpose of which is to
access the PopManager, which mainly resides on disk, by adding the necessary
functionality needed to handle the database. In addition to that,
PopManContrMPoints form the heart of the notification system. If any operation
on the population succeeds, and thereby causes a change, it will send its subscrib-
ers, usually PopManager Controller, a notification message. Finally
PopManContrMPoints do additional checking on the parameters they pass on to
the PopManager and also provide a means of generating the unique instance names,
in case they are needed.

Retrieving data from populations
The main method for this activity is the method, readInstancesOfPopulation:with:

provided by the PopManContrMPoint, which can be called directly via the
PopManager Controller. The use of this method is rather simple. Furthermore, it is
possible to retrieve all kinds of data such as the number of names in an instance
(numberOfColumns), the number of instances in the population
(numberOfInstances), check for existence of an instance Id (instanceExists), and
the names that can be associated with different columns of instances
(getRowOfInstance:name).

In addition to this there are methods for getting information about character-
istics of the abstract object most notably typeOfObject, getClassName, addPossible,
deletePossible, noUniqueName, popEditTitle, isLable, isGeneralisation, and
isSpecialisation.

Finally the Id of each of the objects that are concerned with handling the
abstract object can be retrieved by the methods meetingPoint, PopManager and
osObject, for getting the Id of PopManContrMPoint, PopManager and OS_object,
respectively.

The methods for getting unique instance names need a little explanation.
Whenever the result of noUniqueName is No, the user interface should take care
that the instance Id name that is added to the population is unique. Note that none
of the objects actually check the uniqueness of the name Id added for performance

Dahanayake 47

reasons. To do this the user interface can perform the generateNexInstName
method to obtain a guaranteed unique name.

Adding to populations
The most commonly used method for adding instances is the addInstance:

method. The position of the instance, which is actually only of real importance in the
case of a sequence, is determined by the active position and set selection mode,
which can be set using the setActiveInstanceAt: and the setFirstColSelection:
methods.

It is also possible directly to pass the position and set mode to the method
addInstance:row:mode: of PopManContrMPoint, which is actually the meth- od
that is called by the PopManager Controller when passing it an addInstance:
message. In both cases all user interfaces are notified of any changers.

Deleting from populations
The method that is normally used for deleting a population is deleteInstance

where the instance at the active position is deleted or none if the active position is
-1. When in set mode and if firstColSelection is YES, then the entire set is deleted,
in all other cases only one instance is deleted.

The notification mechanism
The notification system is activated for each operation that causes a change in

the population among some other events, The order of action methods is described
in Figure 29. Note that each action method also has a return value, so there is also
an information flow in the opposite direction of the action methods. This, in fact, has
nothing to do with the actual notification. There are also some variations on the
pattern, where an action within PopManager Controller causes a notification to be
sent.

Subscribing and unsubscribing
A few steps need to be done to get notifications of changes in the population

from the PopManager Controller. First of all a user interface object needs to
implement the notification methods for the kind of events it wants notification for.
These are defined in PopManNotification protocol. Second the user interface
object needs to tell the PopManager Controller that it is ready to receive notification
by sending it a subscribeForNotif: message. To cancel a subscription, the
unsubscribeForNotif: method should be used, where the Id must be the same as

48 Architecture and Implementation Issues

was used when subscribing.

Accessing PopManager directly
Sometimes it is simply unwanted, while editing the population, that the user

interfaces are updated continuously. This is the case when editing a large amount
of the population at once, for example with the complete population option.
Currently there is no other way than accessing PopManager directly if one wants
to work around the notification mechanism. Of course one could also turn of the
updating of the user interface as an alternative, but one needs the PopManager Id,
to be fetched, since the methods that are not supported in PopManager Controller
or PopManContrMPoint are forwarded automatically to PopManager and
OS_object, respectively. When editing a PopManager directly, one must take
certain extra actions into account, namely:

• Enclosing the entire operation within a nestTransaction/ unnestTransaction
pair

• Saving the object back to disk when finished
• Notifying all user interfaces that use the object of the change, usually with an

sendrenewAll or sendRenewAllToAllInstances to PopManContrMPoint

Interfacing to populations
Usually the only object a user or an UpperCASE tool has to use for editing the

population is PopManager Controller. This object hides the inner structure of the
population editing structure by releasing the user from the task of calling the other
relevant objects. By doing this PopManager Controller hides all disk access,

Figure 29: The Notification Path During Normal Operations

Dahanayake 49

including transaction schemes, and ensures consistency within the population.
Furthermore, PopManager Controller provides a notification scheme to its users
that keeps them up to date of any changes in the population. In fact, all users of the
same PopManager Controller instance form a logically grouped set of interfaces.
The entire notification system is designed in such a way that different user interface
objects need to communicate as little as possible with the other interface objects.
This makes the designing of graphic user interfaces for UpperCASE tools a lot
easier and consistent. Other relevant objects that are used for editing populations
are PopManContrMPoint, PopManager, and OS_object. All of these are, directly
or indirectly, used by PopManager Controller. They can be accessed directly in the
rare case it is really necessary, but most of the time using PopManager Controller
is sufficient.

Managing populations
The PopManager Controller object enables separated user interface parts to

handle the PopManager. For example, the pop editor and add instance dialog user
interfaces are different objects that handle the same PopManager Controller. The
Choose Object window sends the pop editor the message whenever the user
chooses a new object to edit. The pop editor then sends a message to the
PopManager Controller. The PopManager Controller notifies its subscribers, in
this case the add instance dialog user interface, to renew all methods. This means
that the pop editor does not need to notify the add instance dialog of any changes.
This is of course a welcome feature, especially when a lot of different user interface
parts are present, since the communication between the user interface objects is
kept at minimum. As it is possible to have multiple groups of interfaces, which can
use several different PopManager Controllers, it is also possible to have several
PopManager Controllers that manage the same PopManager, as shown in Figure
30. To avoid inconsistencies, and to give the automatic notification a bigger scope,
the additional object PopManContrMPoint is introduced.

Just as user interfaces can have subscriptions for notification on PopManager
Controllers, PopManager Controllers have subscriptions for notification on
PopManContrMPoints. There is at most one PopManContrMPoint per
PopManager, which assures that all PopManager Controllers that handle the same
object are connected to the same PopManContrMPoint. Since all operations on
the PopManager that are performed by the PopManager Controller are carried out
via the PopManContrMPoint, the latter can notify all its subscribers (all PopManager
Controllers that handle that object) of any changes. All together, all groups of user
interfaces are always kept up to date; it does not matter who makes the change. An

50 Architecture and Implementation Issues

exception of course is when some object accesses PopManager directly from disk.
The reason for making a distinction between PopManagers and
PopManContrMPoints is simply because PopManagers are contained on disk,
while PopManContrMPoints have codes to access this disk, which obviously could
not be put in the PopManager. The overall class hierarchy of the population editor
is given in Figure 31.

THE GRAPHIC EDITOR
The graphic editor (GRAPHICED) is responsible mainly for the extensions of

the user interface. The important architectural issues that extend the object model
of the CAME environment are the next topic of discussion.

Architectural issues
First the graphic_basis of the graphic base module of the CAME environment

is extended with a number of graphic object types, to form the library of graphic
objects. These graphic object types can be assigned to the objects types of a meta
model. The graphic object types are the new graphic representations that will be

Figure 30: An Example Arrangement

Dahanayake 51

used in the diagram editor to support specific modeling techniques according to the
requirements of the problem situation. Figure 32 gives an example of such a class
hierarchy.

According to our interpretation of view structures, each meta model which is
of a schema type is a view of the UpperCASE tools’ required modeling primitives.
The object types gathered together as a schema type are the objects that will change
their representations to arrive at the required diagrammatic representation. For this
purpose, first a user interface is designed that allows the user to select a specific
schemafootnote{ Which is a meta model of a modeling technique from the
repository. Once a schema is selected, a second user interface is designed to select
the components of the meta model and the required graphic object types, and to
combine them. The edit representation and its underlying select representation user
interface carry this responsibility. The edit representation and its interaction model
with other components of the CAME environment is shown in Figure 33.

An UpperCASE tool editor is designed so that it has access to a specific
schema capable of creating or opening a specific diagram technique. The name of
the diagram technique is already stored in the repository, and the UpperCASE tool
editor obtains an assigned name. This UpperCASE tool editor has to offer all
functions that are necessary to create data models. The draw representation module

Figure 31: Organization of the Population Editor Related Class Tree

52 Architecture and Implementation Issues

Figure 32: Part of the Class Hierarchy of the Graphic Object Library

Figure 33: Interaction Model of Edit Representation

Figure 34: Interaction Model of Draw Representation

Dahanayake 53

associated with the graphic base module of the CAME environment guarantees the
access to UpperCASE tool editors. Figure 34 shows the interaction model of the
draw representation and UpperCASE tool editor with the rest of the module
structure of the CAME environment.

Graphic Editors’ User Interface
In this section we introduce a brief description of the user interface of the

graphic editor. The item representation of the MAIN menu gives access to the
components of the graphic editor. The MAIN menu, together with representation
sub menu, contain the edit representation and draw representation elements.

A single click on the edit representation item opens a new panel to browse
through the schema types that can be selected (see Figure 35). When the choice is
made, a new panel select representation appears immediately which allows the user
to assign graphic_object instances to OS_objects.

Figure 36 shows this select representation user interface. The required graphic
representation can be typed or selected with the use of the Help button. The Help
button gives access to a browser (see Figure 37) which visualizes the available
graphic object types. The Save button can be used to add this required information
to the repository, or the button Cancel can be used.

When the user’s attention is required until some condition is met certain
attention panels pop up. For example, if a user tries to alter the graphic represen-
tation of an OS_object in a schema which is been used to design data models, an
alert panel will point out this incident. It prevents the user from changing the
previously stored graphic_objects, because it is possible that populations already
exist with that graphic representation. In such a situation it is quite natural to delete
the data model if required.

The item draw representation gives access to a new panel to select a schema;

Figure 35: Edit Representation Panel

54 Architecture and Implementation Issues

Figure 38 gives an example of this panel,
which is a two-column browser. The
first column contains the schema types,
and the second column contains the
created data model instances of a spe-
cific schema type. To create a new data
model, first its name has to be assigned
followed by a return key action, which
will automatically open an UpperCASE
tool editor or simply a diagram editor
with the assigned name. It is also pos-
sible to select a name of a model in-
stance to open an existing diagram in-
stance. Similarly, Delete and Cancel
buttons can be used if their services are
required.

The UpperCASE tool is provided
by diagram editor windows containing a
title bar:

<DIAGRAM EDITOR >
 / < Schema_type_name > /
< Diagram_instance_name >.
This diagram editor offers possi-

bilities to select required modeling con-
cepts in the appropriate graphic form to
design models according to UpperCASE
tool’s specifications. This selection is
supported with a Pop Up List.

The selected concept is assigned a
name before placing it on the diagram

editor with the help of the panel (see Figure 39) containing an instance browser,
which allows a new named instance to be assigned or an available instance to be
selected. This diagram editor supports, among other required functions, deleting as
well as moving an object within the editor.

Implementation Issues
An overview of the class hierarchy that captures the structure of all added

components concerning the graphic editor is given in Figure 40. Besides the objects

Figure 36: Select Representation
Panel

Figure 37: Browser of the Help
Button

Dahanayake 55

that this figure shows, there are other transient user interface objects which are
created and used within a specific object. These are mainly panels or browsers,
such as the browser generated with the Help button in edit representation. The
object GraphRep represents the graphic object library.

The diagram editor is a window where the modeling tool is displayed. The
object ShowReps is the controller of the diagram editor. A Draw_area is a place
in this window called ShapeView, and each new graphic representation is
considered to be a sub Draw_area. All Draw_areas within a window are arranged
in a hierarchy, each sub area having a single super area and zero or more sub areas.
A particular Draw_area has its own coordinate system, expressed as a coordinate
transformation of its super area’s coordinate system. A subclass of a Draw_area
is created which implements the mouse-event method to process mouse events.
Then the instance of the custom Draw_area is added to the window hierarchy.
These custom Draw_areas are the super classes of the graphic object library.

At the same time as a new graphic representation is created, a new element of
the population of the active OS_object is generated and tested, to determine if the
element is a valid member of its population before being added. The active
OS_object is given via the Pop Up List of the diagram editor window.

The following functions are embedded into the ShowRep object:
• the selection and activation of OS_objects
• the creation of the new instances of the OS_objects
• the assignment of names to graphic_objects
• the creation of instances of the graphic_object associated to OS_object

Figure 38: Draw Representation
Panel

Figure 39: Panel to Enter the Object
Names

56 Architecture and Implementation Issues

• the adding of the sub draw_areas to the draw_area hierarchy
• the moving of graphic_objects
• the deletion of graphic_objects
• the deletion of related instances of the OS_objects
• the saving of the diagram editor window in the repository

SUMMARY AND CONCLUSIONS
The lack of a tailorable automated support at the level of information systems

analysis and design stage according to information modeling needs of a problem
situation continues to pose a considerable challenge to both academics and
practitioners. This chapter demonstrated how a CAME environment prototype is
designed to deal with this situation. A platform was developed to try out a tool
construction principle, based on a high-level specification of modeling techniques,
with an easy-to-use method specification language. The environment is represented
as a configuration of service objects of major functionalities of information systems
analysis and design activities. The specifications of these service objects are used
as the architectural building blocks of the CAME prototype.

This prototype, based on the service object base theory, demonstrates that it

Figure 40: Overall Class Hierarchy of the Extra Objects Required for the
Graphic Editor

Dahanayake 57

is possible to develop an automated modeling support environment for the method
engineering activities required in information systems design work by mapping the
service object description onto an available object-oriented technology.

REFERENCES
Goldberg, A. (1984). Smalltalk-80: The Interactive Programming Environ-

ment. Reading, Massachusetts: Addison-Wesley.

58 Future Directions in CASE Repositories

Chapter 3

Future Directions
in CASE Repositories

Ajantha Dahanayake
Delft University of Technology, The Netherlands

Today, components and Component Based Development (CBD) is seen
as one of the important events in the evolution of information technology.
Components and CBD offer the promise of a software marketplace where
components may be built, bought, or sold in a manner similar to components
in other industries. In the light of the ongoing developments, in the manner
and art of developing software systems, it is important to consider how the
Computer Aided Systems Engineering (CASE) environment that supports
building these systems can be produced on a CBD approach.

In spite of the fact that CASE environments have been around since the
'70s, there are still many problems with these environments. Among the
problems of CASE environments are the lack of conceptual models to help
understand the technology, the poor state of user requirements specification,
inflexible method, support and complicated integration facilities, which
contribute to the dissatisfaction in CASE users.

During the '90s there has been a growing need to provide a more formal
basis to the art of software development and maintenance through standard-
ized process and product models. The importance of CAME (Computer
Aided Method Engineering) in CASE led to the development of CASE shells,
MetaCASE tools, or customizable CASE environments that were intended to
overcome the inflexibility of method support. The declining cost of comput-
ing technology and its increasing functionality, specifically in graphic user
interfaces, has contributed to the present re-invention of CASE environments.

Previously published in Computer-Aided Method Engineering: Designing CASE Repositories for the
21st Century, edited by Ajantha Dahanayake. Copyright © 2001, Idea Group Publishing.

Dahanayake 59

CASE research in the last decade has addressed issues such as method
integration, multiple user support, multiple representation paradigms, method
modifiability and evolution, and information retrieval and computation
facilities. Considerable progress has been made by isolating particular issues
and providing a comprehensive solution with certain trade-off on limited
flexibility. The requirement of a fully Component Based architecture for
CASE environments has been not examined properly. The combination of
requirements of flexibility in terms of support for arbitrary modeling tech-
niques, and evolution of the development environment to ever-changing
functionality and applications never the less needs a flexible environment
architectures.

Therefore, the theory formulation and development of a prototype for
designing a next generation of CASE environments is addressed in this book.
A CAME environment is considered as a component of a CASE environment.
A comprehensive solution is sought to the environment problem by paying
attention to a conceptual model of such an environment that has been designed
to avoid the confusion around integration issues, and to meet the specification
of user requirements concerning a component-based architecture.

A CAME environment provides a fully flexible environment for method
specification and integration, and can be used for information systems design
activities. A large part of this book reports how this theory leads to the
designing of the architecture of such an environment. This final chapter
contains a review of the theory and an assessment of the extent to which its
applicability is upheld.

A REVIEW OF CAME THEORY AND ARCHITECTURE
The concept of CAME as the solution to the issue of supporting

information systems analysis and design work by providing tailorable auto-
mated support according to the information systems modeling needs in a
problem situation is addressed in this book. The automated support tools have
become the primary means of support at the systems analysis and design stage,
and also the automated support tools currently used by information systems
engineers such as CASE, UpperCASE, MetaCASE, or IPSE do not meet the
expectations of the information systems designers. This observation, stimu-
lated to approach the issue of a modeling support environment, can be tailored
according to arbitrary modeling techniques used for information systems
analysis and design activities.

The overall objective was to find a way to integrate the conceptual model
of the flexible information modeling environment, that represents the way of

60 Future Directions in CASE Repositories

modeling and working of information systems modeling techniques, and the
computer aided systems engineering environment technology. The theory is
based on the supposition that the service object based conceptual model that
represents the way of modeling and working of information systems design
techniques can provide the architectural building blocks of a tailorable
automated support environment to provide CAME support for design and
generation of modeling techniques according to the problem situations. Based
on this premise a theory was defined for formulating and structuring the
functionality of an information systems analysis and design environment that
combines the services required according to a problem situation and their
automated support in a consistent way. The theory leads to a conceptual model
of a flexible and tailorable CAME environment through implementation of
the conceptual framework.

Recall that the process of information systems analysis and design is
viewed as the stages of method engineering of required modeling techniques,
and the analysis and design of the information system using such generated
tools. The method engineering of the required modeling techniques involves
the identification of the required modeling primitives that are required
according to the problem situation, as well as the design of a meta model of
the desired modeling approach. The resulting meta model constitutes a
conceptual model that describes the information architecture of the required
modeling tool according to the problem situation. During the generation of the
modeling tools, the information architectures or the identified building blocks
of the required modeling tools are provided with the required graphic
representations according to the notational conventions of the modeling tools.
This results in an UpperCASE tool or in an automated way of support for
information systems analysis and design activities according to the problem
situation requirements. The actual analysis and design of the information
systems architecture of the problem area takes place using the generated tools.
The crux of this tailorable way of support is as follows.

Chapters 2, 3, and 4 outline the theory that a flexible modeling environ-
ment can be represented adequately by considering it to be a configuration of
service objects of main functionalities of information systems analysis and
design activities.

It has been explained that the functionality of an information system
modeling environment refers to a configuration of main services. This set
provides the required combinations to represent flexible modeling environ-
ments. The services give an indication as to how to specify the boundaries
within which certain functionality can be looked for. Their purpose is to help
in identifying the required functionality of an information system modeling

Dahanayake 61

environment that can be tailored to the requirements of problem specific
modeling techniques. Therefore, a configuration of service objects represents
the main functionality of the information systems analysis and design activi-
ties that is required according to the problem situation within flexible
modeling environments.

In Chapter 2 it is shown that it is possible to define a service object
concept that allows the main functionalities of a CAME environment to be
represented. The case example reported in Chapter 3 indicated that the service
object based CAME environments functional description can indeed provide
a good basis to identify the required service objects to fulfill a particular
functionality. Chapter 4 shows that it is possible to define a set of concepts,
constraints, and interactions that allow a sharp distinction between service
objects to specify the services within such a service object. The service object
model proves to be a useful instrument for delineating the boundaries and the
services of the solution environment that are required eventually.

Chapter 5 provides a confirmation of the feasibility of a service object
based environment to support design of information architectures of model-
ing techniques and generate modeling tools for analysis and design activities.
That is, it is possible to develop an automated method engineering environ-
ment for information systems analysis and design work by mapping the
service object description onto an available object oriented technology.

The specifications of the architectural building blocks of a flexible way
of support for information systems analysis and design activities revealed the
need for an automated means of support. The feasibility of a service object
based Computer Aided Method Engineering environment for engineering
information systems modeling techniques has been demonstrated. The proto-
type META-CAME implemented in the NeXTSTEP/Objective C platform
confirmed that the service object based conceptual model is executable, such
that flexible modeling support can be realized.

Perhaps the most important contribution of this work is from an informa-
tion systems engineer’s perspective, a service object based CAME architec-
ture offers problem-specific design tools for information systems analysis and
design activities. There were number of test cases conducted to assess the
extent to which this upheld. The test cases that were conducted with respect
to this hypothesis can be found in Chapters 6, 7, and 8. In view of the results
obtained in the case studies reported in Chapters 6, 7, and 8, this hypothesis
can not be rejected. The case studies evaluated the extent to which the
environment is flexible according to a problem situation. The design and
generation of information systems analysis and design tools for the financial
and administration systems design activities resulted in a modeling support

62 Future Directions in CASE Repositories

that could be tailored according to the problem situation needs of a structured
analysis and design approach. The design and generation of information
systems design tools for the automobile map system resulted in a modeling
support that could be tailored according to the problem situation needs of an
object oriented modeling approach. The design and generation of information
systems design tools described yielded a support tailorable to an uncommon
modeling approach and to the identification of shortcomings with respect to
executability of the representational aspects of a modeling approach. Finally,
the design of a database and generation of database presentation tools yielded
support for a modeling approach according to the problem requirements, and
resulted in support for representational independence by providing graphical,
matrix, and tree structures. Those case studies have shown that it is possible
to define a set of tightly integrated tools that is useful for defining an integrated
modeling approach, and that the theory and the supporting technology have
the capability to evolve into full life-cycle support for information systems
development.

CASE OUTLOOK FOR THE 21ST CENTURY
Today, business issues are global in nature; information technology, and

the function it can deliver, is just another tool in the arsenal to improve and
accomplish more quickly the desired organizational goals. From an organi-
zational context there is the perceived need for new functionality. The time
needed to develop and implement a solution is increasingly out of step with
the speed at which organizations must respond to, or initiate, change. They
need Information Systems (IS) professionals to design, develop, produce,
distribute, service, and improve product components according to their
demands.

The emergence of novel application areas such as Geographic Informa-
tion Systems, Data Warehouses, Enterprise Resource Planning, e-commerce,
and the diffusion of advance information technologies such as multimedia,
WAP, and n-tier architectures have necessitated a continuous search for
identifying how they can be assimilated for the benefit of the organization.
The paradigm shifts to new development approaches--such as Object Orien-
tation, Component Based Development, and incremental approach--have
necessitated a continuous search for new ways to identify how they can
improve the affectivity and efficiency of systems development methodology
in line with the ever-changing business demands.

The information systems development methodology has always been
unsatisfactory, and over and over it is been evaluated. These evaluations

Dahanayake 63

resulted that there is no way to standardize the information systems develop-
ment methodology, but to allow it to be composed of a modular structure
satisfying the requirements of flexibility, scalability, and reuse (Kumar and
Welke, 1992; Dahanayake, 1997; Tolvanen, 1998). In light of this modular
structure of the methodology and the demand on systems to anticipate
business evolution, a theory and a construction principle of CASE tools is put
forward for the methodology construction that supports present systems
development activities. The construction of CASE tools based on this
Computer Aided Methodology Engineering theory will support cross-cul-
tural information systems development methodologies and will bring about
discipline as well as guidance to solve today’s systems development chal-
lenges.

Method engineering covers all those processes by which an ISD method
is developed, and later customized and instantiated in an organization, in
order to make the method fit the tradition, culture, and infrastructure of the
organization and to meet the specific needs of a particular project. One of the
major considerations within the Method Engineering is to ensure that a
method forms a coherent and integrated composition, and the structure and
the content of the methods are properly changed during the engineering
process.

This customized method construction gave rise to combine and integrate
different methods to satisfy the requirements of flexibility, scalability, and
reuse (Kronlof, 1993; Kumar & Welke, 1992; Goldkhul et al., 1998). A
method with a modular structure is composed of models and techniques that
are integrated by a common phase structure and a compatible set of ap-
proaches and paradigmatic assumptions. Examples of such methods are
Multiview (Wood-Harper et al., 1985), Fusion (Coleman et al., 1994), and
UML (Jacobson et al., 1999) where models and techniques have frequently
been drawn from other methods. Composing a method from components
offers the capability of offering appropriate support for specific tasks.

 Relation Between Modeling Methods, Tools and Techniques During
Method Engineering

64 Future Directions in CASE Repositories

The methodology for systems development today encompasses the
construction of the future conceptual model of the business, which must be
related to the (implicit) present conceptual model of the application or
(information) systems model. Information requirement specification is
constructed in the framework of business model and system model. Informa-
tion required for reaching the solution is described in the business model (e.g.,
workflow, dynamic models, flow-charts, communication models, process
models, etc.). Information available is defined in the system model (e.g.,
entity relationship models, data-flow models, state transition diagrams,
object models, functional models, dynamic models, etc.) so that the business
model is derivable from the system model. These two models are inter- related
and are the two sides of the same coin. The affectivity of the Information
Systems Development approach depends on the corporation and inter-
operability between these two dimensions. Then the ISD approach needs to
customize as well as improve the corporation and inter-operability of the
modeling methods according to these modeling dimensions to stay in tuned
to these cross-cultural modeling needs.

The main challenge for information systems design and development in
general is the continuous changing business needs and the slow and inefficient
anticipation of information system. It is the thesis of this paper that the lack
of consistency between the business modeling approaches and systems
modeling approaches has to be properly treated and solved in order to
anticipate business needs through systems evolution. The anticipation to
business evolution through systems evolution needs to be treated through a
(modeling) method integration requirement within the design methodology.
Failures in this aim cause incoherence and disintegration that in the practice
of information systems development appear as obscurity, mistakes, and
general inefficiency, or even leads to the avoidance of the methodology.

 The Cross-Cultural Modeling Methodology that can Anticipate Business
Evolution

Business Model

Systems Model

Dahanayake 65

The methods fail to support the modeling needs because within the
framework of business modeling and systems modeling, the modeling ap-
proach lacks integration during method construction. The prerequisites that
have to be fulfilled for such an integration of modeling dimensions to be
successful have to be identified and their inherent complexity has to be
considered at early stages of a method construction exercise.

A modular structure gives the opportunity to investigate the credibility of
a methodology in anticipating the evolution of information system according
to changing business processes. Also a modular structure creates special
demands for integration and consistency among the components of a method-
ology that promotes evolution of information system according to business
needs. First of all a methodology that anticipates the evolution of the systems
has to take into consideration that there are no gaps in support of modeling
relevant features in the domain concern, i.e., the business requirements
modeling and systems requirements modeling have to assure structural
integrity. Second, it should provide smooth guidance to proceed from one
process to another guaranteeing functional integrity. Third, the terminology
related to process, domains, and deliverables has to be compatible.

A customized method construction at the maximum flexibility level is
typically supported by a CAME environment, allowing the design, storage,
retrieval, and assembly of these method components. This substantial degree
of flexibility in the construction of new methods requires, among other items,
integration of methods according to the situation of the project. It is quite
reasonable to think that the modeling approaches are properly integrated
within an effective methodology, but this is not true even for the Unified
Modeling Language (UML) (Jacobson et al., 1999). The integration of
models of different conceptual bases is required to improve the modeling
support required for today’s fast-changing systems modeling requirements,
and the way forward for such development needs can be successfully attained
when the CASE environment is constructed according to the theory presented
in this book.

CONCLUDING REMARKS
First of all, this work has demonstrated the feasibility of a basic CAME

environment. The support environment requirements, which have been
determined for arbitrary modeling technique support according to a problem
situation in Chapter 4, concentrated on modeling, views, storage and manipu-
lation, and user interfaces services. The full implementation of storage and
manipulation, and the transaction services were avoided to reduce the

66 Future Directions in CASE Repositories

programming time. When using a CAME environment in reality, in informa-
tion systems design and development activities, the services such as version,
distribution, concurrency, and security control services must be supported on
top of the services already specified to provide services in a distributed and
multi-user CAME environment. Such an environment can be realized by
concentrating on the theory presented here and extending it with adequate
programming activities. The realization of a fully functional CAME environ-
ment in a CASE that supports the method engineering and full life-cycle
phases of information systems design and development is not beyond current
capabilities and technologies.

Secondly, many flaws found in current CASE environments are ad-
dressed in this book, which has introduced a basis for common terminology
to allow useful scientific and commercial initiatives to take place. The service
object based architecture, which separates the conceptual specifications and
the representational differences of tools, conveys a high level object oriented
application program interface for tool repository interaction. The meta-meta
model of this environment provides flexibility and evolution of the modeling
technique specification and use, which is unmatched by any existing MetaCASE
tool. The novel modeling technique specification and generation mechanism
presented in this book meets the needs of the highly diverse representational
paradigms and the information processing capacity that are demanded from
systems engineering environments. The integrity and consistency of reposi-
tory data during concurrent access by different tools is guaranteed in the
architectural specifications of the environment. In this respect a major
paradigmatic revision of how CASE environments are conceived and imple-
mented are provided offering considerable benefits for information systems
engineers with easily adaptable generic services that adequately address
flexible support for information systems design activities.

The third remark is that the method engineering approach of modeling
technique generation has been directed at experienced practitioners with this
PSM-based meta modeling technique. The affectivity of the tool generation
depends on the practitioners’ knowledge and experience in meta modeling.
This approach can produce equally effective results when less experienced
practitioners have mastered the art of meta modeling presented in this study.
Learning this technique may take a few weeks for a qualified information
systems engineer. Once the meta modeling technique is understood, the
generation of a required tool is a matter of a few minutes. The environment
can also be used for the process of learning the method engineering approach
and its meta modeling technique.

Dahanayake 67

The fourth remark concerns the trade-off between the development of a
CAME prototype and a commercial tool. This work focused on arriving at an
adequate prototype to present the theory in a reasonable period of time. The
theory described in this book was developed over a period of four years, and
the CAME prototype was implemented within a time period of two years. The
fine-tuning of the user interface and performance was not considered as prime
target. Therefore, a decision was made to avoid fine-tuning of the tool for high
performance or for a highly commercial user interface. In the future, one can
use this theory for the development of a full life-cycle support environment
for information systems development activities.

 A concluding remark is that there remains a substantial gap between the
design and the development of information systems. Frequently there is a lack
of guidance in finding the suitable information systems analysis and design
approach that can be used to integrate the results into the information systems
development phase. This is not due to shortcomings in the modeling tech-
nique generation and use of the theory described in this book. The CAME
environment and the underlying theory provide the basis for tailoring a
support environment according to problem requirements. Consequently the
design of information architectures of modeling techniques and the genera-
tion of modeling techniques to support information systems design according
to a problem situation leads to the realization of a tailorable way of modeling
and information systems designing. This tailorability will always be obtained
regardless of whether the subsequent design approach is successful. This
tailorable way of automated modeling support will provide an efficient way
of specifying an integrated set of tools in an information systems analysis,
design, and development approach that will increase performance in informa-
tion systems design and development work.

The primitives of a service object represent the actual environment’s
functionalities, and provide adequate architectural building blocks of infor-
mation systems analysis and design processes to work into a cumulative
tradition of component based CASE tool development. Obviously, testing
this hypothesis will be an excellent subject for future research.

REFERENCE
Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F.,

Jeremaes, H. (1994). The Fusion method, Object-Oriented Development.
Prentice-Hall.

68 Future Directions in CASE Repositories

Dahanayake, A.N.W. (1997). CAME: An Environment to Support Flexible
Information Modeling. PhD Dissertation, Delft University of Technology,
The Netherlands.

Goldkhul, G., Lind, M., Seigerroth, U. (1998). Method Integration: The Need
for a Learning Perspective. IEE Proceedings -Software, 145(4), 113-117.

Jacobson, I., Booch, G., Rumbaugh, J. (1999). The Unified Software
Development Process. Addison-Wesley.

Kronlof, K. (1993). Method Integration, Concepts and Case Studies. John
Wiley,Chichester.

Kumar, K., Welke, R.J. (1992). Methodology engineering: A proposal for
situational specific methodology construction. Challenges and Strategies
for Research in Systems Development. (W.W. Cotterman and J.A. Senn,
eds.) John Wiley.

Tolvanen, J-P. (1998) Incremental Method Engineering with Modeling
Tools. PhD Dissertation, University of Jyvasklyla, Finland.

Wood-Haper, T., Antill, L., Avison, D. (1985). Information Systems Defini-
tion: the Multiview Approach, Blackwell Scientific Publication, London.

Piattini & García-Tomás 69

Chapter 4

Audit of a CASE Environment

Mario Piattini
Universidad de Castilla-La Mancha, Spain

Jesús García-Tomás
Universidad Politécnica de Madrid, Spain

INTRODUCTION
The diffusion of CASE tools, along with the ever more pressing problems

surrounding the management of the systems development department, has meant
that themes related to internal control and audit of a CASE environment are of
increasing interest.

In fact, the high cost of introducing CASE technology added to the potential
improvement in productivity and quality have made it one of the most important
areas for the Information Systems auditor.

In this paper we will deal with some of the questions that have to be taken
into account when auditing a CASE environment. Our aim is not to offer exhaus-
tive checklists of factors of influence in this kind of environment, but rather to
reflect upon some themes that have been dealt with throughout in the literature but
from a different perspective to that of the information systems audit. In order to do
this we will begin by briefly introducing the basic concepts of the information
systems audit, giving a brief explanation of the different methodologies that are
used in this area. We will also analize the risks that must be taken into account
when installing a CASE tool.

Previously published in Managing Information Technology in a Global Economy, edited by Mehdi
Khosrow-Pour. Copyright © 2001, Idea Group Publishing.

70 Audit of a CASE Environment

INFORMATION SYSTEMS AUDIT
By the term “internal control” we understand the policies, procedures and

norms as a whole, which are established by the management group of a company
in order to carry out its activities in an orderly and efficient way, safeguarding the
assets and guaranteeing the completeness and reliability of its records. In the field
of information technology, the aim of the internal control system is to guarantee the
adaptation of the management of the computer assets and the reliability of the
activities of the information systems (ISACF, 1998)

The concept “audit” can be defined as “the examination of an activity and the
expressing of an opinion about the quality of the performance of an activity, under-
taken by persons independent of the team responsible for the performance and
supervision of the activity” (Clark et al., 1991).

Until a few years ago this function was related almost exclusively to the finan-
cial aspects and management of the companies; however due to their ever-in-
creasing automation, the need has arisen for highly qualified technical personnel
able to understand the risks that exist in the automated environment of information
systems: these are the information system auditors (Piattini, 2000). Although at the
beginning this person was considered as an “assistant” to the finance auditor, for
whom he/she prepared programs which would make certain tests easier to carry
out, nowadays they are increasingly more autonomous due to the growing com-
plexity of information systems.

The computer audit can be defined, as according to Weber (1999), as “the
process of collecting and evaluating evidence to determine whether a computer
system safeguards assets. Maintains data integrity, allows organizational goals to
be achieved effectively, and uses resources efficiently.”

Usually the information system audit is applied in two different ways; on the
one hand the principal areas of the computer department are audited: the exploi-
tation, the management, the development methodology, the operating system, tele-
communications, databases, etc. and on the other hand the applications that work
in the company are audited – internally developed, sub-contracted or acquired.

The audit of the CASE environment would form a part of the audit of the
development process. The importance of the audit of the development environ-
ment arises from the fact that it is the starting point for the execution of the audit of
the applications.

INFORMATION SYSTEM AUDIT METHODOLOGIES
Although different methodologies exist that can be applied in information sys-

tem audit given that almost all firms of auditors and individual companies develop
their own – these can be divided into two groups:

Piattini & García-Tomás 71

- Traditional Method: that in which the auditor examines the environment with the
aid of a checklist, which is made up of a series of questions to be answered.
For example:

Is there a development methodology? Y N NA

The auditor must record the result of his investigation: Y, if the answer is
affirmative, N, if it is the contrary, or NA (not applicable)

- Risk Oriented Approach Methodology: as that proposed by the “Information
System Audit and Control Association” (ISACA), the most prestigious inter-
national association in the field of information system audit. In this methodology,
first the control objectives are established which minimize the potential risks to
which the environment is subjected.

Referring to these risks, the following could be defined as an example:

Control Objective:
The CASE tool must increase the productivity of the development
personnel.

Once the control objectives have been established, the specific techniques
corresponding to those objectives are specified:

Control Technique:
The methodology and procedures for the use of the CASE tool must
be established.

A control objective may have several associated techniques (controls) which
give it complete cover. These may be of the following types: preventitive, detec-
tive, or corrective.

When controls exist, tests are designed – known as “compliance tests” –
which allow the consistence of these controls to be verified.

Compliance Tests:
Examine the manuals related to the methodology and the proce-
dures.

72 Audit of a CASE Environment

If these tests detect irregularities in the controls, or if there are no controls, a
further kind of test is designed – known as “substantiating risk tests – which allow
the impact of these deficiencies to be estimated.

Substantiating test:
Check if the applications have been developed following the meth-
odology prescribed, by examining the documentation produced by
the CASE tool.

Once the results of the tests have been evaluated, conclusions are drawn,
and these are discussed with the persons directly responsible for the areas af-
fected with the aim of corroborating the results. Lastly, the auditor must communi-
cate a series of comments in which he describes the situation, the risk that exists,
the defect to be corrected and the recommendations.

As a result of the audit, a final report will be submitted in which the most
important conclusions which have been arrived at are presented, as well as the
scope of the audit.

Therefore, the auditor must have knowledge of:
- The risks associated with CASE technology, as in order to set the objectives of

the audit, it is necessary to be able to identify the risks associated with this
technology, evaluating the controls established in order to minimize them.

- The areas of the audit involved, which are principally focused on system devel-
opment.

- The different categories of CASE tools and their principal characteristics (see,
for example, McClure, 1989). This is an aspect on which Moeller (1989) in-
sists: “System developers, users and auditors must have a good knowledge of
the CASE tools that they are using, including their documentation characteris-
tics and the link with the code generators.”

If the auditor is not familiar with the CASE tool he/she will not be able to
carry out certain verifications and therefore an independent expert in the tool would
be required, although that person were not the auditor.

RISKS OF CASE TECHNOLOGY
As pointed out by Perry (1992), two types of risks associated to CASE

technology exist – the first includes the risks inherent in the installation and use of
CASE, and the second is the risk involved in not using CASE.

In fact it is unlikely that an organization that is not using CASE technology,
would be rigorously following a methodology and therefore the auditor should

Piattini & García-Tomás 73

control the development of the software. Moreover, the auditor should reflect this
fact in his final comments, as the absence of CASE will impede improvement in
productivity and quality of the development, will increase maintenance cost, and
the risk may exist of losing the most competent members of staff (as they may
leave the company in order to keep up to date)

In reference to the risks involved in the installation of CASE technology,
these can be analized as they arise during its installation or its daily use.

Risks During the Installation
The auditor must control the following aspects during the installation:

- The selection process should be carried out in accordance with the procedures
already existing in the company (see, for example, ISO). In this process, it is
important (or even essential) to take into account the level of maturity of develop-
ment of the company in order to select the most appropriate CASE tool for it.
Another important aspect in the selection is that the auditor should be consulted
about what audit facilities the CASE tool should have, and these should be borne
in mind in the selection.

- The prestige and solvency of the manufacturer and distributer. They should be
able to provide sufficient support.

- The terms of the contract (see Perry, 1983)
- A training program should be established and carried out as planned.
- An installation plan is proposed and this is approved by the management mem-

ber responsible for this area.
- The new posts and responsibilities created by the CASE technology must be

defined.
- If a pilot project is carried out, its development must be followed.
- In the conversion of a system to the new tools, the auditor must ensure that the

necessary controls have been carried out in order to guarantee the integrity of
the information related to the system.

Risks Arising During Use
Once the tools have been installed, the auditor must be careful to ensure that:

- The tools are under constant evaluation, in order to check that they have adapted
as well as possible to the company and that they are being used to their full
potential. It is also necessary to ensure that the procedures established are
being carried out correctly and their cost-effectiveness

- The CASE tools are integrated with the rest of the software in the company
- The integrity of the data transferred between CASE products or process manuals

and the CASE tool is controlled and maintained.

74 Audit of a CASE Environment

- The procedures of confidentiality are respected. When part of the information
that before was kept on paper is substituted by information stored in the re-
pository of the tool, this aspect may be neglected. It will be necessary to ensure
that the designs are only modified by authorized persons, leaving only clues that
allow independent inspection by the internal control or the auditor.

- Strict control is kept of versions in the dictionary or repository
- The results of the installation of CASE technology must be measured quantita-

tively.
- The CASE tool is being used in those applications where its use is clearly

beneficial
- The changes undergone by the applications are reflected in the CASE tool

CONCLUSIONS
The great influence that CASE technology has on the development environ-

ment, has a considerable effect on the work of the auditor. This power of automa-
tion changes the nature of the development process, eliminating or combining some
steps and altering the means of verification of the specifications and applications.
The auditor needs to recognize the changes in the development process caused by
the CASE. A clear example of these changes could be the automatic generation of
the code from diagrams.

We have briefly summed up the principal aspects related to the information
system audit, all of which can be applied in a general way to both internal and
external audits, bearing in mind the essence and periodicity of each.

Lastly, we should emphasize that CASE tools can be of help to the auditor in
his work as they store a large quantity of information about how the applications
have been designed and therefore the information system auditor should under-
stand the new focus for the development of systems, such as CASE, and the way
in which documentation is constructed.

REFERENCES
Clark, R et al. (Ed.). (1991). The Security, Audit and Control of Databases.

Aldershot, UK: Avebury Technical.
ISACF. (1998). Control Objectives for Information and Related Technology.

The Information System Audit and Control Foundation, Illinois, EEUU.
ISO. (1995). Guideline for the evaluation and selection of CASE tools. ISO/

IEC IS 14102. Geneve. International Standarization for Organization.
McClure, C. (1989). CASE is software automation. Englewood Cliffs, NJ:

Prentice Hall.
Moeller, R.R. (1989). Computer, Audit, Control and Security. New York, EEUU,

John Wiley & Sons.

Piattini & García-Tomás 75

Perry, W.E. (1991). Ensuring the Integrity of the Data Base. Auerbach Pub-
lishers, Warren, Gorham & Lamont.

Piattini, M. (Ed.). (2000). Auditing Information Systems. Hershey, PA: Idea
Group Publishing.

Weber, R. (1999). Information Systems Control and Audit. Upper Saddle River,
NJ: Prentice Hall.

76 Process Model for Round-trip Engineering with Relational Database

Chapter 5

Process Model for Round-trip
Engineering with Relational

Database

Leszek A. Maciaszek
Macquarie University, Australia

Iterative and incremental development of client/server database systems
requires a round-trip engineering support, in particular in a design-
implementation cycle. This paper identifies some more difficult round-trip
engineering scenarios and defines processes needed to handle those scenarios.
The processes conform to the current state-of-the-practice in forward and
reverse engineering with relational databases.
The paper identifies limitations of a tool-driven round-trip engineering. The
limitations can be linked to three reasons: (1) the inability of a CASE/4GL
tool to always generate correct incremental code after schema has been
changed, (2) the need for a CASE/4GL to understand the reverse-engineered
procedural parts written (or modified) in the implementation phase, (3) the
requirement that a database content (extension) be re-instated at the end of
each design-implementation cycle.
Technical limitations introduce a risk that design models and a database
implementation become misaligned and the design-implementation cycle
cannot be continued for iterative and incremental software production. Project
managers need a process model to impose necessary rigour on design and
programming teams to alleviate technical restrictions. The paper defines a
project management strategy that enforces appropriate automated and
manual processes on database development teams.

Previously published in Challenges of Information Technology Management in the 21st Century, edited
by Mehdi Khosrow-Pour. Copyright © 2000, Idea Group Publishing.

Maciaszek 77

INTRODUCTION
Modern software development processes are invariably incremental and itera-

tive. System models are refined and transformed through analysis, design and
implementation phases – details are added in successive iterations, changes and
improvements are introduced as needed, and incremental releases of software
modules maintain user satisfaction and provide important feedback to modules
still under development. As Rational Unified Process states: “An iterative process
is one that involves managing a stream of executable releases. An incremental
process is one that involves the continuous integration of the system's architecture
to produce these releases, with each new release embodying incremental improve-
ments over the other” (Booch et al., 1999, p.33).

Iterative and incremental processes need a strong round-trip engineering sup-
port between adjacent development phases. This is particularly true for lower
engineering processes – design and programming phases. Changes in design models
have to be forward-engineered to existing implementation and changes in imple-
mentation have to be reverse-engineered to design models.

In this paper, we determine the limitations of commercial automation to sup-
port round-trip engineering between a database design model and an incremen-
tally implemented relational database. We identify various incremental changes to
design and implementation, and we show how they can be round-trip-engineered.
The changes include declarative and procedural aspects of database intention
(schema). We require that round-trip engineering is constrained by the database
extension, i.e., the latest database content must be re-instated in a new database.
We define processes that have to be imposed on the design and programming
teams so that round-trip-engineering can be properly managed. The process man-
agement aspect can be enhanced if a change monitoring system is implemented in
the database and if it is itself a subject of round-trip engineering (so that a record
of design and implementation changes, still subject to round-trip engineering, is
kept current at all times).

BACKGROUND AND RELATED WORK
The objective of round-trip engineering is to support evolutionary develop-

ment of software systems. The term was coined, I think, by Grady Booch who
defines it as combining of forward code generation and reverse engineering that
gives "...the ability to work in either a graphical or textual view, while tools keep
the two views consistent." (Booch et al., 1999, p.16).

Round-trip engineering is concerned with an evolutionary development of new
systems and it therefore differs from re-engineering which examines and alters a
legacy system to recover its design and re-implement it in a new form. Neverthe-

78 Process Model for Round-trip Engineering with Relational Database

less, round-trip engineering shares the technologies of re-engineering (Olsen, 1998;
Waters and Chikofsky, 1994), such as:
• forward engineering
• reverse engineering
• redocumentation from source code
• restructuring of program logic
• retargetting the system to a modern platform
• source code translation to another language
• data re-engineering (as opposed to process re-engineering)

There is a large body of literature on re-engineering. The working “blueprint”
for how to use re-engineering for cost- and time-effective systems integration is
given in Mischke (1998). Other major source of information on re-engineering is
Arnold (1993). A process methodology for planning and implementing incremen-
tal re-engineering from legacy systems is described in Olsem (1998). Systems re-
engineering patterns are discussed in Stevens and Pooley (1998).

Forward engineering with visual modeling tools is discussed in any major text-
book on software engineering and on systems analysis and design. Research is-
sues with regard to both forward and reverse engineering are extensively pre-
sented in the Proceedings of IEEE Computer Society's International Conferences
on Software Engineering (ICSE conferences, with more than twenty years his-
tory). There are also specialized conferences on reverse engineering by IEEE
Computer Society - Working Conferences on Reverse Engineering (WCRE con-
ferences, with five years history).

Failures of Computer-Aided Software Engineering (CASE) tools to deliver
promised benefits, and the reasons for these failures, are documented in Jarzabek
and Huang (1998). Desired capabilities of reverse-engineering tools are described
in Jarzabek and Wang (1998). These two papers emphasize the need for pro-
cess-centric (rather than method-centric) CASE frameworks. Other contribu-
tions to process-oriented software engineering include Ambriola et al. (1997) and
Greenwood et al. (1996).

Re-engineering and reverse engineering can benefit from artificial intelligence
techniques and from construction of knowledge bases to assist in program and
database understanding. Early work in this area is reported in Kozaczynski and
Ning (1989). Tool requirements for database reverse engineering are identified in
Hainaut et al. (1996). Database design recovery as an integral part of an iterative
and incremental software production is discussed in Kozaczynski and Maciaszek
(1990). An approach to reasoning with fuzzy nets for reverse engineering from
databases is presented in Jahnke et al. (1997).

Maciaszek 79

This chapter builds on this extensive body of research results and on the capa-
bilities of current technology. The motivations for the chapter, and its potential
contributions, are based on the following requirements:
1. iterative and incremental development pre-supposes that the design documen-

tation reflects the current state of the database implementation at all times (or at
least at some pre-specified “synchronization” times),

2. reverse engineering tools identify and model the recovered design with all de-
tails (as currently implemented),

3. forward engineering tools re-instate fully the database extension after changes
to design models,

4. round-trip engineering applies to both data and procedural parts of a database.

ROUND-TRIP-ENGINEERING SCENARIOS
Round-trip-engineering with the database involves a Physical Data Model

(PDM) at the design end, and a Database (DB) at the implementation end. A
PDM model is a variant of a physical Entity-Relationship (ER) model. In our
experiments, we used the representation supported by a commercial CASE tool -
PowerDesigner Data Architect (version 6.1) from Powersoft. PowerDesigner was
also used in all forward and reverse engineering activities with the DB (managed
by Sybase System 11).

Figure 1 provides a high-level state model for round-trip engineering with da-
tabase. The model uses State Transition Diagrams (STD) of the Unified Modeling
Language (UML) (the diagram has been prepared with Rational Rose CASE

Figure 1. State transition diagram for round-trip engineering with

In i t i a l P D M In i t i a l D B

C u r re n t P D M C u r re n t D B

a rc h ive lo a d

c re a t e

m o d i fy m o d i fy

s y n c h ro n iz e

p o p u la t e

a rc h i ve re -lo a d

80 Process Model for Round-trip Engineering with Relational Database

tool). After the PDM model is constructed (Initial PDM state), it can be archived
(archive event) so that the future changes to the model (modify event) can be
recognized by the CASE tool through comparisons with the archived PDM. For-
ward engineering of the PDM to the Initial DB is triggered by the create event. A
DB extension is created as a result of load event. A modify event on Initial DB
causes a database transition to Current DB state. At this stage, two possibilities
exist: changes to Current PDM have to be synchronized with Current DB (syn-
chronize event) or vice versa - changes to Current DB have to be populated back
to Current PDM (populate event). Eventually, Current PDM may need to be
archived and Current DB may need to be re-loaded.

The rest of this section is organized in six "change scenarios". Each scenario is
discussed in the following points:
• categories of changes that fall in the scenario,
• the process of the automated forward and/or reverse engineering,
• example,
• limitations and conclusions.

In the scenario descriptions, the acronym FE stands for Forward Engineering
and RE - for Reverse Engineering.

Scenario 1 - FE of relatively straightforward schema additions
Categories of changes:

• Addition of a null-allowing column to a table
• Addition of a table
• Addition of a user data type

Figure 2. Intention of T_Employee
T_Employee

emp_id <pk> char(3) not null
first_name varchar(20) not null
middle_initial char(1) null
family_name varchar(40) not null
phone varchar(8) null
commence_date smalldatetime null
terminate_date smalldatetime null

Figure 3. T_Employee with added null-allowing column
T_Employee

emp_id <pk> char(3) not null
first_name varchar(20) not null
middle_initial char(1) null
family_name varchar(40) not null
birth_date smalldatetime null
phone varchar(8) null
commence_date smalldatetime null
terminate_date smalldatetime null

Maciaszek 81

• Addition of a view definition
The process:

• Archive PDM
• Add a new object (e.g. a table) to PDM
• Generate SQL database modification script
• Execute the script on DB (ie. synchronize DB)
• Archive PDM

Example 1 – addition of a null-allowing column to a table:
• Suppose that the following table (Fig.2) has been archived in PDM and the

extension of the table exists in DB.
• New column (birth_date) added (Fig.3) in PDM.
• Modify Database script generated (alter table…) in PDM.

alter table T_Employee
add birth_date smalldatetime null
go

• The script executed on DB - table intention modified and the extension of the
table restored.
Example 2 – addition of a table:

• Suppose that the previous addition of a column has been archived in PDM.
• New tables added in PDM.
• Modify Database script generated in PDM and executed on DB. The DB con-

sists now of three tables with five relationships and a number of triggers to
support referential integrity. The extension of T_Employee remains intact.
Limitations and conclusions:

• Although the existing DB content remains intact, it may not be correct. This is

Figure 4: T_Task and T_Event tables added to the schema.

 [0,n]
emp_id = completed_emp_id

upd(R); del(R)

 [0,n]
emp_id = due_emp_id

upd(R); del(R)

 [0,n]
emp_id = created_emp_id

upd(R); del(R)

 [0,n]

emp_id = created_emp_id
upd(R); del(R)

 [0,n]

task_id = task_id
upd(R); del(C)

T_Task
task_id <pk> numeric(6) identity
contact_name varchar(40) not null
created_dt smalldatetime not null
created_emp_id <fk> char(3) not null
descr varchar(60) not null
value smallmoney null

T_Event
event_id <pk> numeric(6) identity
task_id <fk> numeric(6) not null
event_type tinyint not null
descr varchar(60) null
priority char(1) null
created_dt smalldatetime not null
created_emp_id <fk> char(3) not null
due_dt smalldatetime not null
due_emp_id <fk> char(3) not null
completed_dt smalldatetime null
completed_emp_id <fk> char(3) null

T_Employee
emp_id <pk> char(3) not null
first_name varchar(20) not null
middle_initial char(1) null
family_name varchar(40) not null
birth_date smalldatetime not null
phone varchar(8) null
commence_date smalldatetime null
terminate_date smalldatetime null

82 Process Model for Round-trip Engineering with Relational Database

because the new integrity constraints, whether declarative or procedural, will
not validate existing data.

• Populating new columns with data using SQL Update command may be more
troublesome than re-loading the entire table with SQL Insert command (or with
a DB Load utility).

• New columns include any foreign key columns created automatically in PDM
to enforce referential integrity between existing and new tables. However, for-
eign key columns can only be added in Scenario 1 if they can accept null values.
Otherwise, Scenario 2 applies.

• The recomended process is that PDM designers modify the database, archive
PDM and inform DB programmers about the recommended ways to re-popu-
late the database (as per risks and problems listed above).

Scenario 2 - FE of more problematic schema additions
Categories of changes:

• Addition of not-null column to a table (with or without the default value for the
column).

• Addition of a referential integrity that requires a not-null foreign key in an exist-
ing table.
The process:
Adding a new column to a table in PDM and generating Modify Database

script will not work (see Example below). For this reason, the FE process is more
complex:
• Cut (remove) the table that requires new column(s) from PDM.
• In PDM, modify any invalidated indexes on foreign keys that pointed to the

primary key of the table just removed.
• Archive PDM.
• Paste the table back to PDM and re-establish foreign keys and indexes.
• Add a not-null column.
• Generate SQL database modification script.
• Execute the script on the database.

T_Employee
emp_id <pk> char(3) not null
first_name varchar(20) not null
middle_initial char(1) null
family_name varchar(40) not null
birth_date smalldatetime not null
phone varchar(8) null
commence_date smalldatetime null
terminate_date smalldatetime null

Figure 5: Not-null birth_date column added to T_Employee.

Maciaszek 83

• Re-insert the data into the re-created (ie. dropped and created) table.
• Archive PDM.

Example – addition of a not-null column to a table:
• In PDM, the NOT NULL birth_date column added to T_Employee table (Fig-

ure5).
• Modify Database script can be generated in PDM, but – as expected – does

not execute on DB. Note that the setting of a default value on birth_date would
not eliminate the server error (see below).
alter table T_Employee
 add birth_date smalldatetime default '1-JAN-80' not null
go

Server Message: Number 4901, Severity 16
ALTER TABLE only allows columns to be added which can contain nulls.
Column 'birth_date' cannot be added to table 'T_Employee' because it does
not allow nulls.

• The above means that the table has to be dropped (PDM and DB), re-created
(FE) and data re-inserted with new insert scripts (DB). Note, however, that the
indexes have to be repaired manually in PDM. Otherwise, the Modify Data-
base script will not generate, as shown here:

Error: The following indexes do not have any columns:
-> Index "IND_FK_TASK_CRTEMPID"

(IND_FK_TASK_CRTEMPID) of the table "T_Task" (T_TASK)
-> Index "IND_FK_EVENT_CRTEMPID"

(IND_FK_EVENT_CRTEMPID) of the table "T_Event" (T_EVENT)
-> Index "IND_FK_EVENT_DUEEMPID"

(IND_FK_EVENT_DUEEMPID) of the table "T_Event" (T_EVENT)
-> Index "IND_FK_EVENT_CMPEMPID"

(IND_FK_EVENT_CMPEMPID) of the table "T_Event" (T_EVENT)
Result: 4 error(s).

Limitations and conclusions:
• Dropping a table with the primary key pointed to from other tables breaks the

referential integrity of the database. The restoration of this integrity is not guar-
anteed when the table is re-created and data re-inserted. This is because the
integrity is verified when foreign keys are inserted in "child" tables, not when the
primary keys are inserted in "parent" table.

• The above risk can be alleviated by first deleting the records from the table and

84 Process Model for Round-trip Engineering with Relational Database

then dropping it. The Delete action causes appropriate triggers to fire and re-
quires remedial actions on child tables - thus allowing to drop the table later in
a safe manner.

• Changes in Scenario 2 are troublesome and require a close cooperation be-
tween PDM designers and DB programmers. The FE process must conform to
the sequence of events listed above.

Scenario 3 - FE of additional business rules on schema
Categories of changes:

• Addition of declarative business rules (such as data entry validation).
• Addition of procedural business rules implemented in triggers.

The process:
• Archive PDM.
• In PDM, set new business rules on columns, data types, or tables.
• Generate SQL database modification script.
• Execute the script on DB.
• Archive PDM.

Example – addition of non-modifiability on a column and making the
column values conform to an entry pattern:

• The model is modified in PDM so that column birth_date must not be modifi-
able and phone must conform to the pattern: "9457[0-9][0-9][0-9][0-9]".

• Generate and execute SQL database modification script. The rule on phone
generates a check constraint, but the rule on birth_date requires a trigger.

create table T_Employee
(

emp_id char(3) not null,
first_name varchar(20) not null,
middle_initial char(1) null ,
family_name varchar(40) not null,
birth_date smalldatetime default ‘1-JAN-80’ not null,
phone varchar(8) null

constraint CKC_PHONE_T_EMPLOY check
(phone like "9457[0-9][0-9][0-9][0-9]"),

commence_date smalldatetime null ,
terminate_date smalldatetime null ,
constraint PK_T_EMPLOYEE primary key (emp_id)

)

/* Update trigger "tu_t_employee" for table "T_Employee" */
create trigger tu_t_employee on T_Employee for update as

Maciaszek 85

begin
declare

@maxcard int,
@numrows int,
@numnull int,
@errno int,
@errmsg varchar(255)

select @numrows = @@rowcount
if @numrows = 0

return

/* Non modifiable column "birth_date" cannot be modified */
if update(birth_date)

if exists (select 1
from inserted I, deleted d
where i.birth_date != d.birth_date)

begin
select @errno = 30001,

@errmsg = ‘Column "birth_date" cannot be modified.’
Goto error

end
return

/* Errors handling */
error:

raiserror @errno @errmsg

 [0,n]

emp_id = created_emp_id
upd(R); del(R)

 [0,n]
emp_id = completed_emp_id

upd(R); del(R)

 [0,n]
emp_id = due_emp_id

upd(R); del(R)

 [0,n]
emp_id = created_emp_id

upd(R); del(R)

T_Employee
emp_id <pk> char(3) not null
first_name varchar(20) not null
middle_initial char(1) null
family_name varchar(40) not null
birth_date smalldatetime not null
phone varchar(8) null
commence_date smalldatetime null
terminate_date smalldatetime null

T_Event
event_id <pk> numeric(6) identity
task_id numeric(6) not null
event_type tinyint not null
descr varchar(60) null
priority char(1) null
created_dt smalldatetime not null
created_emp_id <fk> char(3) not null
due_dt smalldatetime not null
due_emp_id <fk> char(3) not null
completed_dt smalldatetime null
completed_emp_id <fk> char(3) null

T_Task
task_id <pk> numeric(6) identity
contact_name varchar(40) not null
created_dt smalldatetime not null
created_emp_id <fk> char(3) not null
descr varchar(60) not null
value smallmoney null

Figure 6: Schema after RE to a new PDM.

86 Process Model for Round-trip Engineering with Relational Database

rollback transaction
end
go
commit
go

Limitations and conclusions:
• Newly generated database rules and triggers do not validate the prior database

content.
• The recommended process is that PDM designers modify PDM and DB (with

a prior warning given to DB programmers).

Scenario 4 - FE and then RE to a new PDM
Categories of changes:

• No changes, just FE to a new DB followed by RE to a new PDM.
The process:

• In PDM, forward-engineer to a new DB.
• In PDM, reverse-engineer from a DB.
• Archive PDM.

Example – RE to a new PDM:
• RE T_Employee, T_Event and T_task tables.
• Reversed-engineered graphical result in PDM is incomplete (Figure 6). The

relationship between T_Event and T_Task “vanished” (cp. Figure 4) because
the CASCADE DELETE constraint in the original PDM was implemented in
DB procedurally through a trigger rather than declaratively (however, the trig-

 [0,n]

emp_id = created_emp_id
upd(R); del(R)

 [0,n]
task_id = task_id

upd(R); del(R)

 [0,n]

emp_id = due_emp_id
emp_id = created_emp_id

emp_id = completed_emp_id
upd(R); del(R)

T_Employee
emp_id <pk> char(3) not null
first_name varchar(20) not null
middle_initial char(1) null
family_name varchar(40) not null
birth_date smalldatetime not null
phone varchar(8) null
commence_date smalldatetime null
terminate_date smalldatetime null

IND_PK_EMP

T_Event
event_id <pk> numeric(6) identity
task_id <fk> numeric(6) not null
event_type tinyint not null
descr varchar(60) null
priority char(1) null
created_dt smalldatetime not null
created_emp_id <fk> char(3) not null
due_dt smalldatetime not null
due_emp_id <fk> char(3) not null
completed_dt smalldatetime null
completed_emp_id <fk> char(3) null

IND_PK_EVENT
IND_FK_EVENT_CMPEMPID
IND_FK_EVENT_CRTEMPID
IND_FK_EVENT_DUEEMPID
IND_FK_EVENT_TASKID

T_Task
task_id <pk> numeric(6) identity
contact_name varchar(40) not null
created_dt smalldatetime not null
created_emp_id <fk> char(3) not null
descr varchar(60) not null
value smallmoney null

IND_PK_TASK
IND_FK_TASK_CRTEMPID

Figure 7: PDM after RE.

Maciaszek 87

ger itself is reverse-engineered, as expected – ref. Scenario 6).
Limitations and conclusions:

• RE creates a challenge for a CASE tool and the reverse-engineered PDM may
contain some flaws. The flaws of a graphical nature can be rectified, but the
flaws in the repository can be difficult to correct.

• This scenario has only theoretical significance. In practice, RE needs to be
conducted after changes have been made to the DB intention.

Scenario 5 - RE to a new PDM after some
changes made in DB intention

Categories of changes:
• Primary key (PK) and foreign key (FK) indexes specified on DB tables.
• System procedures to enforce PK and FK (sp_primarykey & sp_foreignkey)

specified on DB (but all referential integrity constraints implemented procedur-
ally through triggers).
The process:

• In DB, make necessary changes.
• In PDM, reverse-engineer the modified DB objects.
• Archive PDM.

Example – RE to a new PDM after changes made to DB:
• RE T_Employee, T_Event and T_task tables (ref. the original PDM in Figure

4).
• Changes made by the programmers on DB:
• PK and FK indexes created.
• Referential integrity constraints specified additionally through sp_primarykey

and sp_foreignkey procedures (so that the relationships can be re-constructed
in RE).

• RE graphical result (Figure 7):
• The indexes re-engineered properly but some relationships have not been re-

constructed correctly - the CASCADE DELETE (del(c)) constraint between
T_Event and T_Task changed to RESTRICT DELETE (del(r)), and the three
relationships between T_Event and T_Employee re-engineered as only one
relationship.

• Unless the above problems are corrected manually, a conflict exists in DB be-
tween declarative constraints (implemented through sp_primarykey and
sp_foreignkey procedures) and procedural constraints (implemented in trig-
gers).
Limitations and conclusions:

• As before, RE creates a challenge for a CASE/4GL tool and the reverse-
engineered PDM may contain some flaws. The flaws of a graphical nature can

88 Process Model for Round-trip Engineering with Relational Database

PDM Version 1
: PDM

DB Number 1 :
DB

PDM Version 2
: PDM

DB Number 2 :
DB

PDM Version 3
: PDM

genSchema&Triggers

archive
loadDB

programSP&modifyTriggers

modifySchema&Triggers

modify&re-loadChanges

save&archive

reverseChanges

markChangesUnmodifiable and/or changeGenTemplates

genSchema&Triggers&SP

archive loadDB
modifySchema&Triggers

modify&re-loadChanges
save&archive

Pass record
of changes to
designer

Etc.

Figure 8: Sequence diagram for the process model.

be rectified, but the flaws in the repository create serious problems.
• Indexes cannot be reverse-engineered on individual basis - the entire table

would have to be reverse-engineered.
• The recommended process is that DB programmers modify the database and

re-load the data. All changes are well-documented and passed to PDM de-
signers who then conduct a selective RE at a specified synchronization time.

Scenario 6 - RE of triggers and stored procedures to a PDM
Categories of changes:

• Triggers modified in DB.
• Stored procedures created or modified in DB.

The process:
• In DB, make necessary changes.
• In PDM, reverse-engineer the modified DB objects..
• Archive PDM.

Example – RE of a modified trigger:
• In DB, td_t_task trigger modified so that rollback transaction has been changed

to rollback trigger with raise error.
• The trigger is reverse-engineered from DB and it replaces the previous trigger

in PDM. The trigger is then marked as User-Defined in PDM, so that it can be
forward-engineer without changes.
Limitations and conclusions:

• This RE too creates a challenge for a CASE/4GL tool and the reverse-engi-
neered PDM may contain some flaws.

• A care should be taken so that the triggers once modified in DB are not auto-

Maciaszek 89

matically re-generated later in FE activities. These triggers can only be modified
in DB, not in PDM (they need to be marked as User-Defined).

• Alternatively, if the scripting language of the CASE tool allows to “program”
the modification in the templates used to generate the triggers, then the change
can be automatically affected in each FE action.
Limitations and conclusions:

• DB programmers modify the database and re-load the data. All changes are
well-documented and passed to PDM designers who then conduct a selective
RE at a specified “synchronization” time.

• The reverse-engineered triggers are marked as not modifiable in PDM or the
generation templates are “re-programmed.”

• Since in practice, in large-scale database systems, the referential integrity is
implemented procedurally, the changes conforming to this scenario can heavily
limit the reverse engineering activities.

• Note also that in some DBMS-s (e.g., Sybase), only DELETE RESTRICT
and UPDATE RESTRICT can be implemented declaratively. In such systems,
other options (CASCADE, SET NULL, and SET DEFAULT) have to be
implemented procedurally.

PROCESS MODEL
The round-trip engineering process should take into consideration that:

• The PDM model can be archived and versioned by a CASE tool, but a typical
relational DB does not have a built-in capability to maintain DB versions (other
than by creating a new DB).

• After initial generation of DB, the need for changes to PDM is frequently "dis-
covered" during programming; therefore, programmers should be able to modify
DB as needed as long as the modifications are populated back to current PDM.
The populate event (ref. Figure 1) should be done in bulk at specific synchroni-
zation times and PDM should be then archived.

• Any later changes to the archived PDM that need to be synchronized with DB,
should be forward engineered to a new DB instance.
Figure 8 represents a UML sequence diagram for the round-trip engineering

process model. The diagram shows three PDM object instances and two DB
object instances.

First, in Design Phase 1, a PDM model is created (PDM Version 1) so that
SQL scripts can be generated to create database schema and triggers in a DB
(DB Number 1). PDM Version 1 is then archived, and DB Number 1 can be
loaded with data.

As long as DB programmers (in Programming Phase 1) do not modify data-

90 Process Model for Round-trip Engineering with Relational Database

base intention, designers (still in Design Phase 1) can modify schema and triggers
in PDM, and can generate new SQL scripts to modify database schema and
triggers as well as to re-load the database following the modifications. At this
point, a PDM model should be saved and archived in PDM Version 2.

Because PDM and DB are now in unison, DB programmers can be given a
period of time (Programming Phase 2) for unconstrained development, including
programming of stored procedures and making changes to triggers and to data-
base intention. However, all such changes must be carefully documented and passed
to designers at the end of Programming Phase 2 (and the beginning of Design
Phase 2).

In Design Phase 2, the unconstrained programming is suspended and pro-
gramming changes are reverse-engineered to PDM Version 2. Changes to trig-
gers and stored procedures are marked in PDM as unmodifiable (ie. User De-
fined), so that future forward engineering actions do not overwrite those pro-
grams. Alternatively, and for triggers only, the code generation templates are "re-
programmed" so that newly-generated triggers are exactly as those modified in
Programming Phase 2.

When still in Design Phase 2, designers can modify PDM Version 2 any way
they like before generating new SQL scripts to create a DB Number 2. This
brings to the end the cycle of changes organized in two design and two program-
ming phases (and resulting in a brand new database instance). PDM Version 2
and DB Number 2 are now in sync, and the cycle can be repeated.

A cycle can begin with design phase or with programming phase - the process
model requires only that the phases do not conflict, ie. the programmers do not
modify DB in the design phase and the designers do not modify PDM in the
programming phase. Any intended changes to DB or to PDM are recorded in a
Change Monitoring System and affected in its own phase.

SUMMARY
In this paper, I identified a number of challenging issues that underpin round-

trip engineering with databases and I defined a process model to manage the
design-implementation cycle with a relational database. The paper addressed a
range of issues in round-trip engineering of data and procedural parts of a data-
base system. The scope of the paper did not include the design-implementation
cycle with client programs (including any SQL code implemented in the client). A
strong underlying assumption of the paper was that a database content (database
extension) must always be restored after any round-trip engineering cycle.

In the true spirit of round-trip engineering, a process model was proposed that
ensures that the PDM and the DB are synchronized at all times. The model has
been successfully applied to guide development in a few medium-size software

Maciaszek 91

projects in a market research organization (ACNielsen Australia). The projects
involved Visual C++ programs communicating with Sybase System 11 database
via ODBC as well as through the native API (Sybase CL-Library). The develop-
ment tools included PowerDesigner for round-trip engineering with Sybase and
Rational Rose for round-trip engineering with Visual C++.

REFERENCES
Ambriola, V., Conradi, R. and Fuggetta, A. (1997). Assessing process-centered soft-

ware engineering environments. ACM Tran. Soft. Eng. and Methodology, 3, 283-
328.

Arnold, R. S. (1993). Software reengineering. IEEE Computer Society, 688.
Booch, G., Rumbaugh, J. and Jacobson, I. (1999). The Unified Modeling Lan-

guage User Guide, 482. Reading, MA: Addison-Wesley.
Greenwood, R. M., Warboys, B.C. and SA, J. (1996). Cooperating evolving com-

ponents: A rigorous approach to evolving large software systems. Proc. 18th Int.
Conf. on Soft. Eng., IEEE Computer Society, 428-437.

Hainaut, J.-L., Englebert,V., Henrard,J., Hick, J.-M. and Roland, D. (1996). Data-
base reverse engineering: from requirements to CARE tools. Automated Soft.
Eng., 1/2, 9-46.

Jahnke, J.H., Schafer, W. and Zundorf, A. (1997). Generic fuzzy reasoning nets as a
basis for reverse engineering relational database applications. ACM SIGSOFT Soft-
ware Engineering Notes, 6, 193-210.

Jarzabek, S. and Huang, R. (1998). The case for user-centered CASE tools. Comm.
ACM, 8, 93-99.

Jarzabek, S. and Wang, G. (1998). Model-based design of reverse engineering tools.
Software Maintenance: Research and Practice, 10, 353-380.

Kozaczynski, W. and Maciaszek, L.A. (1990). Design recovery as integral aspect of
software engineering. Proc. Fifth Australian Soft. Eng. Conf. ASWEC'90, 87-
92. Sydney, May 22-25.

Kozaczynski, W. and Ning, J.Q. (1989). SRE: A knowledge-based environment for
large-scale software re-engineering activities. Proc. 11th Int. Conf. on Soft. Eng.,
113-122. Pittsburgh, PA, USA, ACM.

Mischke, M.A. (Ed.). (1998). Reengineering. Systems Integration Success (1999
Edition), 336. Auerbach Pub.

Olsem, M.R. (1998). An incremental approach to software systems re-engineering.
Software Maintenance: Research and Practice, 10, 181-202.

Stevens, P. and Pooley, R. (1998). Systems reengineering patterns. ACM SIGSOFT
Software Engineering Notes, 6, 17-23.

Waters, R. G. and Chikofsky, E. (1994). Reverse engineering: Progress along
many dimensions. Comm. ACM, 5, 22-25.

92 Achieving Effective Software Reuse for Business Systems

Chapter 6

Achieving Effective Software
Reuse for Business Systems

Daniel Brandon, Jr.
Christian Brothers University, USA

OVERVIEW
“Reuse (software) engineering is a process where a technology asset is de-

signed and developed following architectural principles, and with the intent of
being reused in the future” (Bean, 1999). “If programming has a Holy Grail, wide-
spread code reuse is it with a bullet. While IT has made and continues to make
laudable progress in our reuse, we never seem to make great strides in this area”
(Grinzo, 1998). The quest for that Holy Grail has taken many developers over
many years down unproductive paths” (Bowen, 1997).

This chapter reports on software reuse research (both literature research and
design/coding research) and presents an approach for effective software reuse in
the development of business systems. This approach is based on Object Oriented
technology and provides for both the specification and enforcement of software
reuse and corporate standards.

BUSINESS SYSTEMS
Business software systems are typically composed of three logical portions

or layers as shown in Figure 1. The “presentation layer” involves the primary user
interaction typically via a graphical user interface (GUI). The “business logic” layer
provides database connectivity, validation, security, transaction control, and other
sequencing or optimization control. This layer may be packaged by a vendor in an
application or transaction server or written by a user. The “database layer” pro-
vides for the manipulation of persistent data, which for most business systems
Previously published in Managing Information Technology in a Global Economy, edited by Mehdi
Khosrow-Pour. Copyright © 2001, Idea Group Publishing.

Brandon 93

today is stored in a relational database. The interface to this process is a well
defined standard application programming interface (API) like ODBC or JDBC
using SQL.

NEED FOR REUSE
Today’s software development is characterized by many disturbing but

well documented facts, including:
Most software development projects “fail” (60% [Williamson, 1997])
The supply of qualified IT professionals is much less than the demand
The complexity of software is constantly increasing
IT needs “better,” “cheaper,” “faster” software development methods

“Object technology promises a way to deliver cost-effective, high quality and
flexible systems on time to the customer” (McClure, 1996). “IS shops that insti-
tute component-based software development reduce failure, embrace efficiency
and augment the bottom line” (Williamson, 1997). “The bottom line is this: while
it takes time for reuse to settle into an organization – and for an organization to
settle on reuse – you can add increasing value throughout the process” (Barrett,
1999). We say “object technology” not just adopting an object oriented language
(such as C++ or Java), since one can still build poor, non object oriented, and non
reusable software even using a fully object oriented language.

TYPES AND APPLICATIONS OF REUSE
Radding defines several different types of reusable components (Radding,

1998):

GUI widgets – effective, but only provide modest payback”
Server-Side components – provide significant payback but require extensive
up-front design and an architectural foundation.
Infrastructure components – generic services for transactions, messaging, and
database … require extensive design and complex programming
High-level patterns - identify components with high reuse potential
Packaged applications – only guaranteed reuse, … may not offer the exact
functionality required

Figure 1

Presentation
Layer

Business
Logic
Layer

Database
Layer

94 Achieving Effective Software Reuse for Business Systems

This article and the research behind it are concerned with the first three types
of reuse.

Reusing code has several key implementation areas: application evolution,
multiple implementations, standards, and new applications. The reuse of code
from prior applications in new applications has received the most attention. How-
ever, just as important is the reuse of code (and the technology embedded therein)
within the same application.

APPLICATION EVOLUTION
Charles Darwin stated that it was not the biggest, smartest, or fastest

species that would survive, but the most adaptable. The same is true for applica-
tion software. Applications must evolve even before they are completely devel-
oped, since the environment under which they operate (business, regulatory, so-
cial, political, etc.) changes during the time the software is designed and imple-
mented. This is the traditional “requirements creep.” Then after the application is
successfully deployed, there is a constant need for change.

MULTIPLE IMPLEMENTATIONS
Another key need for reusability within the same application is for multiple

implementations. The most common need for multiple implementations involves
customizations, internationalization, and multiple platform support. Organizations
whose software must be utilized globally may have a need to present an interface
to customers in the native language and socially acceptable look and feel (“local-
ization”). The multiple platform dimension of reuse today involves an architectural
choice in languages and delivery platforms.

CORPORATE SOFTWARE DEVELOPMENT
STANDARDS

Corporate software development standards concern both maintaining stan-
dards in all parts of an application and maintaining standards across all applica-
tions. “For a computer system to have lasting value it must exist compatibly with
users and other systems in an ever-changing Information Technology (IT) world
(Brandon, 1999). As stated by Weinschenk and Yeo, “Interface designers, project
managers, developers, and business units need a common set of look-and-feel
guidelines to design and develop by” (Weinschenk, 1995). In the area of user
interface standards alone, Appendix A of Weinschenk’s book presents a list these
standards; there are over three hundred items (Weinschenk, 1997). Many com-
panies today still rely on some type of printed “Standards Manuals.”

Brandon 95

ACHIEVING EFFECTIVE SOFTWARE REUSE
In most organizations, software reusability is a goal that is very elusive, as

said by Bahrami “a most difficult promise to deliver on” (Bahrami, 1999). Radding
stated: “Code reuse seems to make sense, but many companies find there is so
much work involved, it’s not worth the effort. …In reality, large scale software
reuse is still more the exception than the rule” (Radding, 1998). Bean in “Reuse
101” states; the current decreased “hype” surrounding code reuse is likely due to
three basic problems (Bean, 1999):

Reuse is an easily misunderstood concept
Identifying what can be reused is a confusing process
Implementing reuse is seldom simple or easy to understand

Grinzo (1998) also list several reasons and observations on the problem of
reuse, other than for some “difficult to implement but easy to plug-in cases” such
as GUI widgets: a “nightmare of limitations and bizarre incompatibilities,” perfor-
mance problems, “thorny psychological issues” involving programmers’ person-
alities, market components that are buggy and difficult to use, fear of entrapment,
component size, absurd licensing restrictions, or lack of source code availability.

Some organizations try to promote software reusability by simply publishing
specifications on class libraries that have been built for other in house applications
or that are available via third parties, some dictate some type of reuse, and other
organizations give away some type of “bonus” for reusing the class libraries of
others (Bahrami, 1999).

But more often than not, these approaches typically do not result in much
success.

“It’s becoming clear to some who work in this field that large-scale reuse of
code represents a major undertaking” (Radding, 1998). “ An OO/reuse disci-
pline entails more than creating and using class libraries. It requires formalizing
the practice of reuse” (McClure, 1996).

Based upon both our literature research herein and experimental implemen-
tations, it was concluded that there were two key components to formalizing an
effective software reuse practice both within an application development and for
new applications. These components were:

1. Defining a specific Information Technology Architecture within which ap-
plications would be developed and reuse would apply

2. Defining a very specific object oriented “Reuse Foundation” that would be
implemented within the chosen IT architecture

96 Achieving Effective Software Reuse for Business Systems

IT ARCHITECTURE
“If you want reuse to succeed, you need to invest in the architecture first”

(Radding, 1998). “Without an architecture, organizations will not be able to build
or even to buy consistently reusable components.” In terms of IT architectures for
business systems, there are historically several types as: Central Computer, File
Services, Two or Three Tier Client Server, and Two or Three Tier Internet
(Browser) based. Various transaction processing and database vendors have their
own “slants” on these basic approaches, which may depend upon how business
logic and the database are distributed.

It was decided to base our implementation research and development on the
last of these categories as shown in Figure 2. Only vendor independent and “open”
architectures would be used. The “multiple platform” dimension of reusability would
be handled by using Java and Java generated HTML. Internet based applications
are becoming the preferred way of delivering software based services within an
organization (Intranets), to the worldwide customer base via browsers and “net
appliances” (Internet), and between business (Extranets).

The presentation layer is represented by browser windows using HTML or
Java Applets. The HTML is a static container for the Java Applet or is dynami-
cally generated by a Java Servlet. The business logic layer is in the form of Java
Servlets running on the information (Internet) server. The database, typically run-
ning on a separate server, is accessed via JDBC from the Servlets (or even from
the Applets if a “type 4” pure JDBC driver was used).

Figure 2

Brandon 97

OBJECT ORIENTED REUSE FOUNDATION
As has been concluded by several authors, “A reuse effort demands a solid

conceptual foundation” (Barrett, 1999). The foundation used here is shown in
Figure 3, and is called the “Object Oriented Reuse Foundation” (OORF). It is
based on the key object oriented principles of inheritance and composition. By
establishing this foundation, an organization can effectively begin to obtain signifi-
cant reusability since programmers must inherit their class from one of the estab-
lished classes and they must only compose their class of the established pre-built
components.

In the design of Figure 3, an application is composed of a number of Appli-
cation Windows. Each of these is derived from the Standard Window (or from
another window which was derived from the Standard Window) and is associ-
ated with a table or view in that database. The Application Window implements
the Standards interface. The Application Window is composed of screen fields,
which use a specific screen item and are bound to a column of the database table/
view. Each screen item implements the Standards and also implements the
GUIWidget interface. The GUIWidget interface defines the functions that all screen

Figure 3

Figure 4

98 Achieving Effective Software Reuse for Business Systems

items provide (such as, requestFocus, setText, getText, isValid, etc.). The screen
items can be from the Java AWT, Java Swing, or third party class libraries as long
as these class library sources have been extended to use the data in the Standards.
The Standards interface defines all the standards used throughout the system in-
cluding: fonts, colors, styles, sizes, initial states, icons, etc.

While Figure 3 shows the conceptual OORF, there would typically be an
inheritance hierarchy of Standard Windows including forms, tables, etc. Screen
Items would be a hierarchy also for the different types of these widgets such as
textboxes, radio buttons, choice buttons, etc. Each application could also create
an inheritance hierarchy of application windows.

Figure 4 shows a generated application window which provides navigation
and update support for a selected database table including automatic lookup of
defined foreign keys to maintain referential integrity. The reusability for this ex-
ample was 95%, that is 95% of the lines of code were already in the OORF. For
the applications implemented thusfar, all obtained reusability of over 90%.

REFERENCES
Bahrami, A. (1999). Object Oriented Systems Development. New York: Irwin

McGraw Hill
Barrett, K. and Schmuller, J. (1999). Building an infrastructure of real-world re-

use. Component Strategies, October.
Bean, J. (1999). Reuse 101. Enterprise Development, October.
Bowen, B. (1997). Software reuse with java technology: Finding the holy grail.

www.javasoft.com/features/1997/may/reuse.html.
Brandon, D. (2000). An object oriented approach to user interface standards.

Challenges of Information Technology in the 21st Century. Hershey, PA:
Idea Group Publishing.

Grinzo, L. (1998). The unbearable lightness of being reusable. Dr. Dobbs Jour-
nal, September.

Lim, W. C. (1998). Managing Software Reuse. Englewood Cliffs, NJ: Prentice Hall.
McClure, C. (1996). Experiences from the OO playing field. Extended Intelligence.
Paulk, M. (1995). The Capability Maturity Model. Reading, MA: Addison

Wesley.
Radding, A. (1998). Hidden cost of code reuse. Information Week, November 9.
Reifer, D. (1997). Practical Software Reuse. New York: John Wiley & Sons.
Weinschenk, S., Jamar, P. and Yeo, S. (1997). GUI Design Essentials. New

York: John Wiley & Sons.
Weinschenk, S. and Yeo, S. (1995). Guidelines for Enterprise Wide GUI De-

sign. New York: John Wiley & Sons.
Williamson, M. (1999). Software reuse. CIO Magazine, May.

Church & te Braake 99

Chapter 7

The Future of Software
Development

Karen Church and Geoff te Braake
Port Elizabeth Technikon, South Africa

Software development has changed dramatically in the last fifty years and
will continue to change. Its future course is of particular interest to developers,
in order to gain the correct skills, and to any person faced with a strategic
information technology (IT) decision. It is commonly accepted that computers
will play an ever-larger role in modern civilisation. There are many unknowns,
but the IT decisions made today will affect the competitiveness and
preparedness for tomorrow. Awareness of the central issues that will affect
the future of software development is the best form of preparation. This
chapter presents a view of the future of software development based on the
history of software development and the results of two surveys.

INTRODUCTION
Software development tools and techniques have changed considerably in

the last half century, are still changing, and will continue to change in the future as
hardware capabilities improve and new technologies make new methods of pro-
cessing and communication possible.

The aim of this chapter is to draw conclusions about the future of software
development from trends that can be identified in its evolution to date. The results
of two surveys will help to illustrate some of these trends. The first was a question-
naire survey aimed at software developers which compared their First and Last
Project in terms of a number of criteria. The second was a survey of job adver-
tisements in the Computing SA newspaper over a ten year period.

Previously published in Managing Information Technology in a Global Economy, edited by Mehdi
Khosrow-Pour. Copyright © 2001, Idea Group Publishing.

100 The Future of Software Development

Visual Basic
frmMain.MousePointer =
vbHourglass

C++
HCURSOR lhCursor;
lhCursor = AfxGetApp()->
LoadStandardCursor
(IDC_WAIT);
m_bCursor = TRUE;
SetCursor(lhCursor);

Figure 1: Levels of abstraction in Visual Basic and C++

This chapter addresses the advancing generations of programming languages
which have gained and lost popularity over the survey period. The evolution of
coding styles and software architecture will be briefly described. The growing
importance of user interfaces will be explained, in addition to a brief description of
the increasing complexity of applications from user and developer perspectives.
The final section will describe the future trends that can be projected from these
points.

LANGUAGE GENERATIONS AND USAGE
The first applications of computers were to gain some form of military advan-

tage based on doing many mathematical calculations very quickly (Arnold, 1991,
pp.32-35). Computers then began to be used in business to speed up administra-
tive tasks (Leveson, 1997, p.130). Online transaction processing and later, the
personal computer, introduced a whole new dimension to computing by allowing
people without programming training to use computers.

The challenge for software developers is to create programs that enhance the
lives and work of those who use them. This section begins by describing the
software development evolution. The development of programming language gen-
erations and their usage is addressed.

LANGUAGE GENERATION
In the early generations of programming languages, machine and assembly

languages, the code was written at the level of machine instructions. Many state-
ments were needed to accomplish simple calculations. Programs were long and
errors were easily introduced, but difficult to identify and remove.

High level languages (HLLs) were developed to hide the details of imple-
mentation from the programmer. This is known as abstraction and is a common
theme in the history of programming languages (Watson, 1989, pp.4-10). Each
HLL command is translated into any number of machine instructions. HLL coding
is shorter, and programs are easier and quicker to write and debug. The com-
mands are fairly easy to learn and meaningful names can be given to variables and
subprograms.

Church & te Braake 101

Style First Project Last Project
3GL 57.1% 15.4%
4GL 35.7% 76.9%
Other 7.1% 7.7%

Table 1: Language Generation by Project

 1989 1990 1992 1993 1994 1995 1996 1997 1998 1999 2000
ASP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 2.5 7.9
C 12.1 8.7 23.1 28.8 22.1 13.5 9.9 8.5 6.2 7.1 6.8
C++ 0.0 0.0 4.6 8.0 19.4 18.5 16.2 11.7 12.9 16.2 14.7
COBOL 26.4 34.1 18.5 16.8 17.1 14.9 17.0 21.0 12.4 6.0 1.3
HTML 0.0 0.0 0.0 0.0 0.0 0.0 0.3 2.9 2.6 3.0 8.7
Java 0.0 0.0 0.0 0.0 0.0 0.0 0.6 3.2 4.7 7.0 12.3
JavaScript 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 1.1 3.1
Natural 12.1 19.2 15.7 12.8 14.4 8.6 8.8 9.8 9.4 3.3 0.5
RPG 18.3 19.2 21.3 15.2 6.8 9.6 5.4 5.6 6.0 4.6 0.8
SQL 2.9 0.9 7.4 7.2 5.0 10.2 6.5 4.0 9.4 10.2 11.0
Visual Basic 0.0 0.0 0.0 0.0 10.4 19.5 17.9 10.9 16.5 20.5 18.4

Table 2: Most Sought-after Languages by Year

Figures = percentage of skills per newspaper issue.

HLLs differ in the amount of abstraction that they provide. Visual Basic (VB)
offers a higher level of abstraction than C++, as can be seen in Figure 1, in the
operation to change the mouse pointer.

The higher the level of abstraction, fewer lines of code are required to achieve
the same goal. Less code in the program makes it easier and quicker to write and
debug. However, there is usually a performance penalty when the level of the
language is higher. Flexibility is also decreased as the level of the language in-
creases because the programmer has less control over the exact way in which the
processing is done (McConnell, 1996, pp. 345-368).

Non-procedural languages take abstraction even further, with the program-
mer coding the desired result, not the method for achieving it. Historically, proce-
dural languages have been the most commonly used type of language, as other
language types were slower and more resource intensive. However, recent im-
provements in computer performance and language optimisation has meant that
currently, there is a greater use of the other types of languages. The most widely
used non-procedural language is SQL (McDermid, 1991, p.44/3; Kimball, 1996,
pp.xxi-xxii; Watson, 1989, pp.79-81).

Table 1 shows a definite trend towards higher level languages with over three
quarters of the Last Project being done using fourth generation languages (4GLs).
This can be attributed to increasing pressure to produce systems more efficiently
together with the development of more powerful 4GLs (McConnell, 1996,
pp.2,345).

102 The Future of Software Development

Style First Project Last Project
Component 7.1% 23.1%
Object-oriented 28.6% 61.5%
Structured 50.0% 15.4%

Table 3: Coding Style by Project

LANGUAGE USAGE
Whilst hundreds of programming languages have been created, relatively few

have been widely used. The advert survey (results below) aimed to discover which
languages have been used the most in software development since 1989. A num-
ber of general trends can be seen from Table 2.

The most sought-after language in the early 1990s was COBOL, followed
by RPG, Natural, and C. By the year 2000, the main languages were C++, VB,
SQL, and the Web languages Java, HTML, and ASP.

Thus, there has been a move to higher level languages. There has been a shift
away from some long established languages with the new computing environment
dominated by the graphical user interface and the Web in particular. The next
section will describe the evolution of coding styles.

CODING STYLE EVOLUTION
As seen in the previous section, languages have become more powerful and

have raised their level of abstraction. The programming language chosen for de-
velopment may either encourage or discourage certain programming practices
depending on their features. This section highlights some of these coding styles.

Structured programming became the most popular programming style in the
1970s. It popularised the concept of modular programming (Yaeger, 1995, p.2).
A source of many problems with structured programming was that variables could
be inadvertently changed resulting in errors.

Since the late 1980s object-orientation has gained popularity amongst soft-
ware developers. Object-orientation makes use of classes which encapsulate data
and functions into a single unit. Object-orientation is an important paradigm for
contemporary system developers and is supported in many widely used languages,
such as C++ and Java (Salus, 1998, pp.5-11).

Graphical development languages (e.g., Visual Basic, Delphi) popularised
the concept of component-based programming. Components should be built with
standard interfaces so that they can be reused by other applications and any other
language or tool that supports the interface method. This is widely used in Internet
development. (Jacobson et al., 1997, pp.85,156).

Church & te Braake 103

It is common to build components using the object oriented style just as
object orientation makes use of structured concepts. Thus the different styles can
be seen as an evolution of better coding practices which aim to increase produc-
tivity, maintainability, reusability, and readability of code while decreasing the number
of errors, and time required for coding and maintenance.

The coding style used by the respondents in the First and the Last Project
shows considerable difference (Table 3). In the First Project the structured style
was the most common, followed by the object-oriented style. Structured pro-
gramming decreased considerably in the Last Project. Object orientation was the
clear leader in the Last Project, followed by the component style.

The majority of object-oriented and component-based development is done
using 4GLs . Projects developed using the structured style, however, mainly use
3GLs.

There has been an evolution in programming styles to promote modularisation,
data hiding, and reuse. This allows systems to be developed more quickly, to have
better quality and to be easier to maintain. Software architecture has also changed
considerably resulting in different development opportunities and challenges which
will be discussed in the next section.

SOFTWARE ARCHITECTURE
The previous sections showed that using modern coding styles can help de-

velopers to produce and maintain systems more efficiently. These styles have been
supported by different languages in different eras. The evolution in software archi-
tecture is as a result of the changing capabilities of hardware, and increasingly
distributed and integrated systems.

Most early data processing applications were isolated subsystems. Each ap-
plication used its own flat data files. Online transaction processing increased the
number of records in files and required random access to records. However, as
the number of records in files increased, inconsistencies in data and accessing of
records became major problems. Therefore a more integrated solution was sought
and a number of database models were developed.

The network model was the first de facto database model in the late 1960s
and early 1970s. The databases were, however, dependent on the application
development language and many vendors produced incompatibile products (Fortier,
1997, pp.187-188). The relational model, proposed in 1970, was independent of
the application development language using the database and many applications
could access the same database (Deen, 1985, p.77). This meant that the
organisation was not bound to a particular language for development (Hughes,
1988, p.4-5). The relational model has become popular due to the simplicity of

104 The Future of Software Development

Figure 2: Three-tier Web architecture

database structure, the flexibility of relationships, and the richness of data ma-
nipulation (Fortier, 1997, pp.207,244).

In the mid-1980s, Local Area Networks (LANs) were becoming popular
and each department in a company installed its own LAN and developed its own
departmental client/server applications. This resulted in redundant and inconsis-
tent data within an organisation. In the early 1990s the development of enterprise
client/server IT systems which replaced or augmented legacy mainframe systems
and integrated departmental LANs, allowed companies to deliver the right infor-
mation when and where it could best be used (Goldman, Rawles & Mariga, 1999,
p.19).

These systems began using the three-tier application architecture (Figure 2),
which is also the architecture of the Web. Applications are divided into three
layers or tiers known as P-A-D, presentation, application and data. Each tier can
be handled by different computers and developed in different languages. Not only
can the layers of the application be split onto different computers, but each layer,
especially the application and data layers, may also be split over multiple comput-
ers making it scalable. System maintenance and modification is facilitated by al-
lowing changes to one tier or component without affecting the others (Edwards,
1999, pp.3-11). Providing the client with a Web interface greatly simplifies distri-
bution and platform problems.

Thus software architecture has moved from a single unit on a mainframe com-
puter to distributed data, application and presentation tiers. Data has moved from
multiple, inconsistent data sources to single integrated databases. In dealing with
large systems, such as the many enterprise scale systems presently being created,
it is desirable to have an architecture that allows units to be worked on
simulataneously and independently (Jacobson, 1997, p.171). An area of software
development that has become very important in recent years, is the user interface,
which is discussed in the next section.

P resentati

A pplicatio n

D ata A pp1 A pp2

A pp3
S O A

C orb a

DCOM

DCOMhttp
ODBC
OLE DB

Church & te Braake 105

Style First Project Last Project
GUI 35.7% 53.8%
Text-based 50.0% 0.0%
Web-based 14.3% 46.2%

Table 4: User Interface

USER INTERFACES
IT systems are commonly developed for access in a distributed environment,

giving non-IT people access to information resources and data processing power.
This makes the user interface particularly important in development. Changes in
common user interfaces are described below.

The first few decades of computing focused on performance and functional-
ity of applications. When millions of people began using productivity tools, it be-
came apparent that a primary determinant of the success of an application was its
ease of use for users of all levels of experience (Van Dam, 1997, p.64).

From the early 1960s through the mid-1980s text-based user interfaces were
used almost exclusively. The WIMP GUI (graphical user interfaces based on win-
dows, icons, menus and a pointing device), first began to gain popularity with the
Macintosh in 1984 and later achieved its current dominance with Windows. When
this event-driven paradigm was introduced it was difficult for developers to pro-
duce this type of application with the available tools. The Windows environment
returned programmers to working in ways reminiscent of low-level programmers.
A tool was needed to increase the level of abstraction to allow efficient Windows
programming. Therefore languages such as Visual Basic and Delphi were devel-
oped to build GUI applications efficiently (Cornell, 1997, pp.xix).

Half of the First Projects reported in the questionnaire survey were text-
based. Text-based systems development virtually disappeared in the Last Project
whilst Web interfaces show the biggest gains, even though they are relatively new
(Table 4).

Thus the user interface is one of the most important aspects of IT systems,
especially as they are becoming more complex from a number of perspectives,
which are discussed below.

GROWING APPLICATION COMPLEXITY
The user interface is one of the primary factors determining the success of a

system. Applications are becoming more powerful but also more complex for
developers to produce. This complexity arises from increasing integration with
other systems and utilising the growing power of computers to produce better
information. These trends are discussed in terms of groupware, multimedia, mul-
tiple language development, and team work.

106 The Future of Software Development

GROUPWARE
Groupware is a relatively new set of technologies that allows for easier com-

munication and collaborative work by means of a computer network. The Web is
a very good medium for deploying groupware technologies, but needs to have
enhanced security to make it viable (Goldman et al., 1999, pp.177-178, 217).

MULTIMEDIA
Multimedia provides a richer experience of the application for the user. This

has become possible because of increased hardware capability. The Internet pro-
vides a container for presenting rich multimedia as well as providing the means of
co-ordinating its distribution. Multimedia development tools have developed rap-
idly due to industry focus on the Web and its mass usage (Nicol et al., 1999,
p.79).

An increasingly important feature of the software industry is gaming. Games
tend to tax computer system resources to the maximum, making it imperative that
developers access sound and graphics capabilities at low levels to increase the
speed of performance. Graphics and sound are combined to create more real
experiences. The simulation effects are becoming so realistic that games have
large inventories of the objects and environments that are simulated. Some games
require some level of artificial intelligence. Therefore, games development is driv-
ing new technologies, many of which will have applications in marketing, educa-
tion and other areas (Tapscott, 1999; Walnum, 1995, pp.6-11,70-71).

MULTIPLE LANGUAGE DEVELOPMENT
It is evident from the advert survey referred to earlier that multiple technolo-

gies for a single project is not a new phenomenon. Many adverts for COBOL
programmers included required skills in CICS and some database management
system. In 2000 (Table 2) SQL was the fourth most sought-after skill. In Web
development there are client side scripting and markup languages and application

Style Multi-language Single Language
First Project 35.7% 64.3%
Last Project 92.3% 7.7%

Table 5: Number of Languages by Project

Style Multi-language Single Language
GUI 66.7% 33.3%
Text 28.6% 71.4%
Web 87.5% 12.5%

Table 6: Number of Languages by Interface

Church & te Braake 107

logic languages (Edwards, 1999, pp.3-11). Therefore, multiple language devel-
opment is the rule, rather than the exception.

The questionnaire demonstrated that over 90% of the last projects (Table 5)
were developed with multiple languages. This was particularly true of Web-based
projects. It was less common in GUIs and the minority of text-based systems
(Table 6). The component paradigm gives the possibility of being able to create a
system built from components developed in the best language for the task. The
components are connected using an interface protocol, the most common being
COM/DCOM and CORBA (Finne, Leijen, Meijer & Jones, 1999).

TEAM WORK
A team can be defined as a group of people whose complementary skills,

common purpose and approach enable them to complete a task for which they
are mutually accountable. Team work has always been important, especially now
with multiple languages and having to deal with the intricacies of networks and
other technologies. This range of skills can only be provided by teams (Jacobson
et al., 1997, p.54). Table 7 shows that the percentage of projects on which devel-
opers worked as a team, as opposed to doing the project on their own, rose from
78.6% to 100%. Thus while team work has been important in IT development in
the past, it is has now become vital.

Thus applications are becoming more complex, both in terms of functionality
offered and consequently in their development. Now that some of the important
factors of the past and the present of IT systems development have been dis-
cussed, some thoughts on the future are presented.

THE FUTURE
With the rapid rate of change in the IT field it is very difficult for developers to

see what the future trends might be. After analysing the past changes and current
situation the following points are suggested as likely directions for the future of
software development in the short term.

The trend of moving to higher level languages is sure to continue in the effort
to produce quality systems efficiently. Hardware advances make the processing
overheads incurred by these languages less significant.

There needs to be some consolidation in Web development and there are
likely to be numerous tools and languages developed that attempt to do this. One

Style F irst P roject L ast P roject
T eam m em ber 78 .6% 100.0%
W orking so lo 21 .4% 0 .0%

Table 7: Team work by Project

108 The Future of Software Development

technology that may prove important is Microsoft’s ASP+ Web Forms, which will
allow the development of Web applications in a similar way to Visual Basic. The
ease with which these developers can produce complete Web applications and
the increasing usage of ASP (see Table 2) makes this a technology to watch in the
coming months. (Microsoft, 2000a; Microsoft, 2000b).

Java has progressed from experimental to implemented systems faster than
any language except VB. Considering its rise in popularity and wide usage and
successive releases to remedy the slowness in execution, Java can be expected to
remain a mainstream programming language for some time to come (Berst, 2000a;
Babcock, 2000).

Developers will experiment with other types of languages. Non-conventional
languages may be used to produce specific components or applications in the
areas for which the language is intended..

Object-orientation appears to remain dominant, but the component para-
digm is likely to gain ground, especially with the importance of the Web.

The Web is likely to play a role in most systems development projects, espe-
cially as XML is developed to allow for more powerful applications. A specific
example is the Simple Object Access Protocol (SOAP), a protocol that could
provide the interface between virtually any two systems as long as they support
both hypertext transfer protocol (HTTP) and XML. (Skonnard, 2000).

An emerging area of software development is that of mobile devices. The
second generation of mobile phones, using digital networks, were introduced in
the early 1990s and experienced exponential growth in numbers of users and
services associated with them. The next generation of mobile telecommunications
will include many more wireless data services (Väänänen-Vainio-Mattila & Ruuska,
1999, pp.24-25). It will be an important area of software development. It will
create new requirements and limitations while still providing a rich multimedia ex-
perience for an even less computer literate audience than the Internet.

Thus the future of IT systems development will have increasingly stronger
tools that allow developers to produce systems that address ever more complex
functionality, thereby building applications that will enhance the user’s productiv-
ity, not restrict it. As the tools become more powerful more of the technical cor-
rectness will be supplied by the tool, but more creativity will be required of the
developer to adapt to and to use new technologies to produce better IT systems.

CONCLUSION
IT systems play a vital role in modern civilisation. There is virtually no indus-

try that does not use some form of computerisation and many are totally depen-
dent on computers to control their operations. Software development will change

Church & te Braake 109

unrecognisably in the future, as it has in the past, and it is not possible to predict
how with any certainty (Leveson, 1997, p.129). This paper attempts to present
the future of software development, in terms of the factors from its past.

Programming languages have seen to be continually raising the level of ab-
straction, hiding the details of implementation from developers. This allows them
to focus their efforts on achieving the best solution, rather than how to do it. The
languages used have changed with the type of the majority of applications that are
developed. Currently, as well as in the near future that means the most widely used
languages will be visual development languages that produce Web applications.
Coding styles have evolved methods for making programs easier and quicker to
develop and to maintain by building them out of units which can be changed inde-
pendently and reused in many systems. The independent units include the splitting
of the application into data, logic and presentation tiers with interfacing protocols
to make applications flexible and scalable. The user interface has become an in-
creasingly important part of applications as they become more powerful and are
used by people of all levels of experience to improve their efficiency.

Thus this paper has drawn some conclusions about the future of software
development in order for current developers to make themselves better prepared
to meet the challenges that lie ahead.

REFERENCES
Arnold, D. O. (1991). Computers and Society Impact! New York: McGraw-

Hill.
Babcock, C. (2000). Java: Can Sun control the flood? Inter@ctive Week. [cited

3 July 2000]. URL http://www.zdnet.com/enterprise/stories/main/
0,10228,2581701,00.html.

Berst, J. (2000a). Scott McNealy’s Java Jive. [cited 3 July 2000]. URL http://
www.zdnet.com/anchordesk/stories/story/0,10738,2582432,00.html.

Cornell, G. (1997). Visual Basic 5 from the Group Up. Berkeley, CA: Osborne/
McGraw-Hill.

Deen, S. M. (1985). Principles and Practice of Database Systems. Hamp-
shire: Macmillan.

Edwards, J. (1999). 3-Tier Client/Server at Work (Revised ed.). New York:
John Wiley & Sons.

Finne S., Leijen, D., Meijer E. and Jones S.P. (1999). H/Direct: A binary foreign
language interface for Haskell. ACM SIGPLAN NOTICES, 34(1), 153-162.

Fortier, P. J. (1997). Database Systems Handbook. New York: McGraw-Hill.
Goldman, J. E., Rawles, P. T. and Mariga, J. R. (1999). Client/Server Informa-

tion Systems. New York: John Wiley & Sons.

110 The Future of Software Development

Hughes, J. G. (1988). Database Technology A Software Engineering Approach.
New York: Prentice Hall.

Jacobson, I., Griss, M. and Jonsson, P. (1997). Software Reuse. Reading, MA:
Addison Wesley.

Kimball, R. (1996). The Data Warehouse Toolkit. New York: John Wiley &
Sons.

Leveson, N. G. (1997). Software engineering: Stretching the limits of complexity.
Communications of the ACM, February, 40, 129-131.

McConnell, S. (1996). Rapid Development. Redmond, WA: Microsoft Press.
McDermid, J. (1991). Software Engineer’s Reference Book. Oxford:

Butterworth-Heinemann.
Microsoft (2000a). Microsoft Primes Millions of Developers for the Next-

Generation Web. [cited 3 July 2000]. URL http://www.microsoft.com/
presspass/press/2000/feb00/nextgenerationpr.asp.

Microsoft (2000b). Visual Studio Enables the Programmable Web. [cited 3
July 2000] URL http://msdn.microsoft.com/vstudio/nextgen/technology/
Webforms.asp.

Nicol, J.R., Getfreund, Y.S., Paschetto, J., Rush, K.S. and Martin, C. (1999).
How the Internet helps build collaborative multimedia applications. Communi-
cations of the ACM, January, 42(1), 79-85.

Salus, P. H. (1998). Handbook of Programming Languages, 1. Macmillan Tech-
nical Publishing

Skonnard, A. (2000). SOAP: The Simple Object Access Protocol. [cited 1
August 2000]. Microsoft Internet Developer, January 2000.

Tapscott, D. (1999). The power of electronic play. Computer World, May 24,
32.

Väänänen-Vainio-Mattila, K. and Ruuska, S. (1999). Designing mobile phones
and communicators for consumers’ needs at Nokia. Interactions, September,
23-26.

Walnum, C. (1995). Windows 95 Games SDK Strategy Guide. Indianapolis,
IN: Que.

Watson, D. (1989). High-Level Languages and Their Compilers. Wokingham,
England: Addison Wesley.

Yaeger, J. (1995). Programming in RPG/400 2nd ed. Loveland, Co: Duke Press.

Dobing & Parsons 111

Chapter 8

Understanding the Role
of Use Cases in UML:

A Review and Research Agenda1

Brian Dobing
University of Lethbridge, Canada

Jeffrey Parsons
Memorial University of Newfoundland, Canada

A use case is a description of a sequence of actions constituting a complete
task or transaction in an application. Use cases were first proposed by
Jacobson (1987) and have since been incorporated as one of the key modeling
constructs in UML (Booch, Jacobson, & Rumbaugh, 1999) and the Unified
Software Development Process (Jacobson, Booch, & Rumbaugh, 1999). This
paper traces the development of use cases, and identifies a number of
problems with both their application and theoretical underpinnings. From an
application perspective, the use case concept is marked by a high degree of
variety in the level of abstraction versus implementation detail advocated by
various authors. In addition, use cases are promoted as a primary mechanism
for identifying objects in an application, even though they focus on processes
rather than objects. Moreover, there is an apparent inconsistency between
the so-called naturalness of object models and the commonly held view that
use cases should be the primary means of communicating and verifying
requirements with users. From a theoretical standpoint, the introduction of
implementation issues in use cases can be seen as prematurely anchoring the
analysis to particular implementation decisions. In addition, the fragmentation
of objects across use cases creates conceptual difficulties in developing a

Previously published in the Journal of Database Management, vol.11, no.4, Copyright © 2000,
Idea Group Publishing.

112 Understanding the Role of Use Cases in UML

comprehensive class model from a set of use cases. Moreover, the role of
categorization in human thinking suggests that class models may serve
directly as a good mechanism for communicating and verifying application
requirements with users. We conclude by outlining a framework for further
empirical research to resolve issues raised in our analysis.

The Unified Modeling Language, or UML (Booch, Jacobson, & Rumbaugh,
1999), has rapidly emerged as a standard language and notation for object-oriented
modeling in systems development, while the accompanying Unified Software
Development Process (Jacobson, Booch, & Rumbaugh, 1999) has recently been
developed to provide methodological support for the application of UML in
software development. The adoption of UML brings focus to object-oriented
developers faced with the task of choosing among dozens of proposed approaches
to object-oriented analysis and design. In light of this activity, driven primarily by
practitioners, it is important from an academic perspective to independently
evaluate the capabilities and limitations of UML and the Unified Process. Such
evaluations can contribute to the development of theoretical underpinnings of
UML, to an improvement in its modeling power and usability, and to its appropriate
application in systems development projects.

This chapter focuses on two components of UML: use cases and class
models. In particular, we consider the appropriateness of use cases as a component
of an object-oriented modeling language by looking at their role as a tool for
communicating with users, and the relationship between use cases and the class
models that are developed from them. We examine the variability in the amount of
detail use cases should contain, according to various proponents, and introduce a
theoretical rationale for including fewer task details than many proponents advo-
cate. We discuss the lack of ‘object’-orientation in use cases, and present a
theoretical argument that use cases may, in fact, not be necessary or valuable in
UML. Finally, we develop a framework for empirical research to evaluate the value
of use cases and their relationship to class models in UML.

USE CASE FUNDAMENTALS
The term “use case” was introduced by Jacobson (1987) to refer to “a

complete course of events in the system, seen from a user’s perspective” (Jacobson,
Christerson, Jonsson, & Overgaard, 1992, p. 157). The concept resembles others
being introduced around the same time. Rumbaugh, Blaha, Premerlani, Eddy, and
Lorensen (1991); Wirfs-Brock, Wilkerson, and Wiener (1990); and Rubin and
Goldberg (1992) used scenarios or scripts in a similar way. But, despite concerns
about the awkwardness of the name, the use case has become an important part

Dobing & Parsons 113

of most object-oriented analysis and design methodologies. Use cases were
incorporated into UML in late 1995, after Ivar Jacobson joined forces with Grady
Booch and James Rumbaugh.

The use case differs from typical structured requirements analysis tools that
preceded it in two important ways. First, the use case is largely text-based.
Structured analysis emphasized the importance of graphical tools, such as Work
Flow and Data Flow Diagrams. The rationale for preferring diagrams to text was
the oft-cited “a picture is worth a thousand words.” In addition, before structured
methodologies became available, analysts often generated extensive and unstruc-
tured text descriptions of existing and proposed systems that were very difficult to
use. UML has not abandoned diagrams; Activity, Sequence and Use Case
Diagrams all play important roles during analysis. But use cases are the key
communication tool, so that “users and customers no longer have to learn complex
notation” (Jacobson et al., 1999, p. 38).

Second, use cases focus on transactions from the user’s perspective. In Data
Flow Diagrams, transaction sequences were often not explicitly articulated. All the
steps needed to, for example, sell goods to a customer would be there, but the
connections between taking orders, checking inventory levels, determining pay-
ment types and authorizations, printing receipts, and other activities were not always
clear. The focus on complete transactions shares some important similarities with
the concept of a “process” in Business Process Reengineering, “a collection of
activities that takes one or more kinds of input and creates an output that is of value
to the customer” (Hammer & Champy, 1993, p. 35). Both emphasize complete
transactions viewed from a customer or user perspective, although the terms “user”
and “customer” imply a different level of analysis. Jacobson, Ericsson, and
Jacobson (1994) deal extensively with using use cases to support reengineering,
suggesting the similarity is not coincidental.

Use cases have been all but universally embraced in object-oriented systems
analysis and development books written since Jacobson et al. (1992). There are a
few exceptions, but their alternatives still share some common features. For
example, Coad (1995) refers to “scenarios” that seem more detailed or lower level
than use cases (e.g., a sale calculating its total (p. 61)). Nevertheless, Norman
(1996, p. 165) suggests that Jacobson’s use cases and Coad’s scenarios are
“similar concepts.” Kilov and Ross (1994, pp. 9-10) use the notion of a “contract”
that states “what has to be true before and what will be true after the operation.”
Contracts focus more on pre- and post-conditions rather than the steps in between,
but again there are similarities.

114 Understanding the Role of Use Cases in UML

USE CASE INTERNAL STRUCTURE
Analysis Versus Design Focus

Despite the strong endorsement of the general use case concept, there are
many variations on Jacobson’s original theme. Not all use cases are created equal.
First, there is a difference in content. Use cases, at least during the analysis phase,
are generally viewed as a conceptual tool. The use case should emphasize ‘what’
and not “how” (Jacobson et al., 1994, p. 146). This suggests use cases shouldn’t
mention technology (e.g., Evans, 1999).

A review of use case examples shows that determining when the “what” ends
and the “how” begins is not always easy. Brown (1997) interprets “what” to mean
what the system will do rather than the internal implementation. Thus, his use cases
include references to screen designs. So do those of Satzinger and Orvik (1996,
p. 126). Harmon and Watson (1998, p. 121) go further in their example and refer
to the salesperson’s laptop. And even Jacobson et al. (1992, p. 162) refer to a
display “panel,” “receipt button” and “printer” in one of their examples. Some use
cases also include more detail on business rules. For example, the IBM Object-
Oriented Technology Center (1997, p. 489) video store example includes the
condition that customers who are not members pay a deposit of $60.

However, as Larman (1998, p. 10) notes, use cases are not tied to object-
oriented methodologies and thus are technology-independent in that sense. The
same cannot be said for Data Flow Diagrams, which were designed to produce a
basic module structure for a COBOL program. Object-oriented systems can be
built without use cases and, conversely, use cases could be used in non-OO
projects.

A second issue in use case structure is the variety of formats that have been
proposed. Some, such as whether use case titles should begin with gerunds (e.g.,
“Adding a Customer”) or action verbs (e.g., “Add a Customer”), are not serious.
More interesting is the format of the text itself. While the first use cases in Jacobson
et al. (1992) were written as a paragraph of text, most others have adopted
numbered steps. More recently, Jacobson et al. (1994, p. 109) have done so as
well. This may not appear to be a serious issue, but sequenced and numbered steps
are an invitation to write about ‘how.’ While the underlying technology need not be
mentioned, use cases have become very process oriented. In most cases, they go
much further than simply documenting requirements to providing a suggested
solution.

Third, the comprehensiveness of use cases also varies. Some take a minimalist
approach. Jacobson et al. (1994, p. 105) suggest that use cases should offer
“measurable value to an individual actor.” MacMaster (1997) argues that use cases
be used only for main system functions. But White (1994, p. 7) states that “the

Dobing & Parsons 115

collected use cases specify the complete functionality of the system.” While Dewitz
(1996) uses 11 use cases in her video store example, the IBM Object-Oriented
Technology Center (1997) has 24.

Fourth, the level of detail within each use case also varies. Constantine and
Lockwood (2000) distinguish between “essential” use cases, containing few if any
references to technology and user interface implementation, and “concrete” use
cases that specify the actual interactions. Clearly, use cases could move from
essential to concrete as the development process proceeds. But not everyone
agrees that concrete use cases should ever be used (e.g., Evans, 1999). There are
alternative mechanisms that can be used to document screen design choices and
similar decisions.

Jacobson et al. (1999) advocate an iterative development approach in which
both the number of uses cases and their level of detail increase as the life cycle
progresses. They suggest that only the most critical use cases (less than 10%) be
detailed in the first (inception) phase. As analysis progresses and requirements
become firmer, additional use cases can be added and each can be expanded to
include considerably more detail. The analyst could move toward concrete use
cases or simply expand the detail within essential use cases. However, knowing
where to start, how far to go at each phase, and when to stop, are clearly critical
issues not easily resolved.

To further complicate the issue, some of those who favor fewer or less detailed
use cases supplement them with “scenarios.” Booch (1994, p. 158) defines
scenarios as examples of what can happen within a use case. ‘Add a customer’ is
a use case. Adding a specified customer with a particular name, address, etc. is a
scenario. A well-chosen set of scenarios provides further detail on exception
handling and other special cases (e.g., customers with missing, improbable, or
unusual data (Lockheed Martin, 1996)). The same scenarios can later be used in
testing. A minimalist approach to use cases combined with extensive scenarios may
still result in a large and very detailed set of specifications.

Fifth, and perhaps most important, the role of use cases varies among
methodologies. Earlier work on UML focused on the language itself, and was
largely agnostic on issues of methodology. But the Unified Process (Jacobson et al.,
1999, p. 34) makes clear what was always implicit – use cases “drive the whole
development process.” In particular, they provide “major input when finding and
specifying the classes, subsystems and interfaces.” Rosenberg and Scott (1999),
however, suggest that “domain modeling” precede use case development. Their
domain model is a “glossary of terms” (p. 16), intended to evolve into the objects,
attributes, operations and associations. This glossary is based on “available relevant
material” (p. 16). From this, a skeletal class diagram is constructed. They warn,
“Don’t try to write use cases until you know what the users will actually be doing”

116 Understanding the Role of Use Cases in UML

(p. 45). Thus, use cases will drive design, but not problem solving. Schneider and
Winters (1998) begin with a written project description and risk analysis, before
defining the system boundary and the actors. Then, use cases are identified. Blaha
and Premerlani (1998, p. 49) state that, “Once you have a sound object model, you
should specify use cases” and warn that early use cases must be regarded as
“tentative and subject to revision" (p. 150).

In summary, review of the literature shows extensive differences in how use
cases are defined and used. These differences certainly exceed the basically
cosmetic variations in Data Flow Diagram and Entity Relationship Diagram formats
found in standard structured analysis books. The existence of different use case
formats and roles is not surprising, given UML’s relatively short history. Moreover,
UML brings together many analysis and design constructs because of its roots.
While this is a notable achievement, the end product is loosely defined, complex
(perhaps overly so), lacks a strong theoretical foundation, and thus is very difficult
to test in a definitive way.

Determining Appropriate Use Case Focus
The use case variations are real. Despite a general consensus that use cases

are intended for conceptual modeling of system requirements, many versions of use
cases incorporate significant design and implementation details (e.g., at the level of
the user interface). One potential way to resolve this apparent inconsistency is to
adopt a contingency perspective. Different approaches may be useful under
different circumstances, with the best approach in a specific situation depending on
the analysts, the task, the users, and other situational variables.

However, we believe a stronger basis can be adopted to predict a most
appropriate form for use cases that is applicable across a wide range of circum-
stances. The key to this proposal is implied by the general idea outlined earlier that
use cases are requirements analysis and modeling tools that should describe what
a system does (or should do), rather than how the system works (or should work).

Within this context, detailed use cases that specify low-level actor interactions
with a system (e.g., down to the point of screen designs) essentially embed certain
design choices. Introducing such considerations during analysis may prematurely
guide the developers to specific implementation decisions. This is particularly a
concern when the development process is intended to support the reengineering of
existing processes, an endeavor for which Jacobson et al. (1994) strongly advocate
the application of use case-driven methodology.

The potential impact on systems development of use cases that embed design
decisions can be understood in the context of a well-known phenomenon in
psychology – anchoring and adjustment (Tversky & Kahnemann, 1974).
Experiments have shown that, when people are given a problem and an initial

Dobing & Parsons 117

estimate of its solution, and then asked to find a final solution to a problem, they tend
to anchor to the initial estimate (Plous, 1993). That is, they tend to provide solutions
close to the initial estimate (anchor), even when those estimates are severely flawed.
Anchoring is a useful heuristic that helps humans simplify problem solving in a
complex situation. Unfortunately, people tend to rely on anchoring too much,
resulting in an adjustment bias, in which people fail to make adequate modifications
to an initial solution.

The concepts of anchoring and adjustment, although originally proposed in the
context of activities such as subjective probability estimation, have a natural
application to use cases. To the extent that use cases include design or implemen-
tation details that reflect current ways of doing things, reengineering or process
innovation are likely to be inhibited. Consequently, we postulate that the level of
innovation that can be achieved through use case-driven process design is inversely
related to the level of design or implementation detail embodied in the use cases.

FROM USE CASES TO A CLASS MODEL
Finding Objects in Use Cases

In addition to modeling systems requirements from a user perspective, use
cases and use case diagrams specify the behavior of the objects in a system. Some
developers use them to identify the object classes required in the implementation,
and the behavior of objects. In this way, use cases feed the development of
subsequent models in UML: particularly the class model, but also sequence, activity
and statechart diagrams and other UML artifacts.

In this context, it is useful to examine prescriptions in the UML literature for
proceeding to the development of a class model from use cases. Booch et al. (1999)
advocate applying “use case-based analysis to help find these abstractions” (p. 55),
and describe this as an “excellent” way to identify classes. This view has subse-
quently been echoed in the Unified Process. According to Jacobson et al. (1999,
p. 34), “use cases provide major input when finding and specifying classes.” They
further go on to assert “classes are harvested from the use case descriptions as the
developers read them looking for classes that are suitable for realizing the use
cases.” However, they do not offer specific prescriptions for finding classes of
objects in use cases.

Jacobson et al. (1994) provide a more detailed description of the role of use
cases in finding classes of domain objects:

When you have a first proposal for the most obvious entity objects, you
continue to work with the use cases. You identify objects by traversing
one use-case description at a time to ensure that there is an object
responsible for each part of the use case’s course of events. … When you

118 Understanding the Role of Use Cases in UML

work through the use case’s course of events in this way, it is probable
that you will identify further object entities. (pp. 184-185)
“Noun/verb analysis” is also applied to use cases (e.g., Holland & Lieberherr,

1996). Nouns, particularly things, persons or roles, events, places and interactions,
are possible classes. But Jacobson et al. (1994, p. 105) state: “when we say that
we identify and describe a use case, we mean that we identify and describe the
class.” This suggests that whoever is writing use cases should have a reasonable
understanding of what classes are and what ones are likely to emerge during
analysis. Interestingly, using nouns to identify classes of objects or entities for an
application predates UML by a large period, and has been advocated for data
modeling for many years. In contrast, some others have suggested the class model
(or at least an initial attempt) ought to precede the creation of use cases. Pooley and
Stevens (1999), for example, offer a detailed description of methods for identifying
classes. They describe a process of identifying nouns in a systems requirement
document as a mechanism for identifying candidate classes for an application (p.
58). These nouns may come from use case descriptions or other requirements
documents, although Pooley and Stevens are silent on the source and nature of these
documents. Rosenberg and Scott (1999, p. 16-17) search for nouns and verbs in
“available relevant material,” which includes the “problem statement, lower-level
requirements, and expert knowledge,” along with other sources such as marketing
literature. They also identify classes before writing use cases. Booch (1994)
similarly advocates the use of noun analysis to identify classes.

Indeed, Pooley and Stevens (1999) indicate a potential problem with use
cases as a component of UML:

Use case modeling should be used with caution, however, since …
[t]here is a danger of building a system which is not object-oriented.
Focusing on use cases may encourage developers to lose sight of the
architecture of the system and of the static object structure. (p. 101)

Moreover, they go on to state “we do not believe that examination of the use cases
is on its own a good way to find objects and classes” (p. 102, emphasis at source).

Meyer (1997, p. 738) also states that, “use cases are not a good tool for
finding classes.” One reason is that use cases emphasize procedural sequences and
this is at best irrelevant to class modeling and could even be dangerous to the
process. Other concerns are that users will either tend to develop use cases around
what is happening now, thus failing to consider reengineering of the process, or will
simply revert to functional design. However, Meyer believes that use cases can be
effectively employed as a validation tool and implementation guide. The final system
must be capable of handling the scenarios identified by users, although perhaps not
in the same way as they originally envisioned.

Dobing & Parsons 119

Another approach to modeling classes is the use of CRC cards (Beck &
Cunningham, 1989; Pooley & Stevens, 1999). While not specifically part of UML,
they can be used to model the required functionality responsibilities and association
collaborations of classes once the classes that are needed have been identified.

In summary, the process for moving forward from the use case model to
identify classes is neither universally accepted, even among use case adherents, nor
does it appear to be clearly defined or articulated. Proposed techniques, such as
noun identification, are rooted in older techniques from data modeling. The lack of
integration between use cases and class models raises questions about the value of
use cases in an object-oriented modeling approach.

Objects Versus Processes
A use case is inherently task focused. It describes a sequence of activities,

from start to finish, involved in completing a well-defined task or transaction. As in
any task, many participants may be involved in the successful completion of a use
case. These participants are candidates for objects that will be important to the
system. A task or process focus, however, involves participants only to the extent
that they contribute to the task. Hence, a use case involves objects only peripherally
and only as needed for the task being modeled. Therefore, a complete use case
model may not offer a cohesive picture of the structural and behavioral character-
istics of the objects in the domain. Instead, these characteristics may be spread over
several use cases.

The fragmentation across use cases of information needed to construct class
definitions conceptually violates the principle of encapsulation, widely recognized
as one of the cornerstones of object orientation. As a result, it can create a significant
amount of work for analysts and developers in “defragmentation,” or reconstructing
classes from a potentially large number of narrowly focused views that might be
embedded in many different use cases. Although we are not aware of empirical
research, or even anecdotal reports, on the extent of this problem, a case can be
made that the task can be daunting. The problem is analogous to the issue of view
integration in database design (Navathe, Elmasri, & Larson, 1986). There, the
issue is one of developing a global conceptual schema from a set of diverse user
views of the kinds of entities about which data need to be kept. Since different users
have different needs, they generally have a different perspective on which entities
are important, and how they are defined in terms of attributes and relationships.
Problems to be resolved include identifying synonyms (entities, attributes, and/or
relationships with the same meaning that have different names in different views) and
homonyms (entities, attributes, and/or relationships with different meanings that
have the same name in different views).

120 Understanding the Role of Use Cases in UML

Similar problems are possible when identifying object classes, their attributes,
and their operations from a series of use cases. Given that different use cases are
likely to be relevant to different users of a system, it is reasonable to expect that
resolving synonyms and homonyms will impede the comprehensive and consistent
identification of objects from use cases. Consequently, we propose that identifying
a comprehensive and consistent class model from use cases alone will be very
difficult, if not practically impossible.

USE CASES AS A COMMUNICATION MECHANISM
Isolating Users from the Class Model

In view of the apparent lack of “object” focus in use cases and the potential
problems that can arise in deriving a class model from a use case model, it is natural
to question the rationale for including use cases in UML. This is particularly
interesting since use cases are a relatively recent addition to UML. Much of the
rationale for adopting use case modeling in UML focuses on their simplicity and the
fact that they are “comparatively easy to understand intuitively, even without
knowing the notation. This is an important strength, since the use case model can
sensibly be discussed with a customer who need not be familiar with the UML”
(Pooley & Stevens, 1999, p. 93). This view suggests that other UML models, in
particular the class model, are too technical for end users to understand or be
capable of verifying.

Communication with the system’s intended users is clearly an important, if not
always explicitly articulated, goal of use cases. A use case model provides an
inventory of the kinds of interactions that can occur between users and a system,
providing “a forum for your domain experts, end users, and developers to
communicate to one another” (Booch et al., 1999, p. 229). Use cases are thus
oriented towards interaction with end users for the purpose of verifying the
developers’ understanding of how a system works or will work.

This understanding is essential for effective system development, and also
helps create a “shared understanding” among team members that is a critical part
of the trust building process (Ring & Van de Ven, 1989). Text may be easier to
understand than diagrams, at least to an untrained user. Thus, use cases could
contribute both to the accuracy of the requirements specification and also to its
apparent openness. The analyst does not appear to be hiding behind diagrams that
only IS professionals can understand.

In discussing the value of use cases in reengineering business processes,
Jacobson et al. (1994) similarly explain the role of the use case in communicating
with users or those responsible for a business process:

Use cases are best described using simple language to facilitate under-
standing. … The rightful owner, that is, the defined business process

Dobing & Parsons 121

owner for the use case, will thereafter validate each use case’s compli-
ance with the established corporate objectives. (p. 178)

Here, use cases are clearly established as a tool for communicating and verifying
with users the developers’ understanding of how tasks are performed. In contrast,
they clearly see the verification of class or object models as the purview of
developers:

The reviewers are normally people in the reengineering team. It is unusual
to communicate the object models to the employees in general, which
means that the only people who are really involved and competent to
review these models are in the reengineering team. (p. 190)

Taken together, these statements suggest that use cases are an appropriate
mechanism to ‘shield’ users from the underlying technical UML models that are the
basis for systems design and implementation.

The need to exclude users from direct exposure to the class model in particular
highlights an interesting contradiction in UML. One of the main arguments offered
for developing object-oriented approaches to systems analysis and design is that
objects provide a “natural” way of thinking about a problem domain. In this regard,
Booch (1996, p. 39) notes that “in a quality object-oriented software system, you
will find many classes that speak the language of the domain expert” and “(e)very
class in an object-oriented system should map to some tangible or conceptual
abstraction in the domain of the end user or the implementer.” Jacobson et al.
(1992) make the case more directly:

People regard their environment in terms of objects. Therefore it is simple
to think in the same way when designing a model. A model which is
designed using an object-oriented technology is often easy to understand,
as it can be directly related to reality. Thus, with such a design method,
only a small semantic gap (emphasis at source) will exist between reality
and the model. (p. 42, emphasis at source)
The previous discussion shows that, despite this avowal of the naturalness and

ease of understanding of UML models, the developers of the language explicitly
introduce use cases as the primary mechanism for communicating with users to
verify understanding of system functionality.

Use Cases Versus Class Models for Communication
The contradiction highlighted above can be dealt with in at least two ways.

First, there is significant literature in cognitive psychology to support the contention
that people think about the world in terms of things that are classified in particular
categories (e.g., Medin & Smith, 1984). Lakoff (1987) views such category
structures as vital for human survival, arguing that “(w)ithout the ability to categorize,
we could not function at all” (p. 1). Parsons and Wand (1997) apply categorization

122 Understanding the Role of Use Cases in UML

research to analyze those aspects of object orientation that are meaningful from a
systems analysis perspective, and conclude that classification is a vital element for
object-oriented analysis.

From a cognitive perspective, one would expect that users should be able to
handle class models as a mechanism for communicating with developers in verifying
the conceptual structure of the domain being modeled. Of course, issues such as the
difficulty of learning the notation associated with a particular class modeling
technique can negatively influence communication. Nevertheless, the fundamental
idea that a domain can be described in terms of the kinds of objects in it, the
attributes of the objects, the behavior the objects can exhibit, and the associations
among kinds of objects, is highly consistent with research on the nature of categories
that people use to structure their knowledge about things in the world. Conse-
quently, we hypothesize that end users will be able to interact directly with class
models in verifying the structure of a domain.

Cognitive psychology also provides a second basis for understanding the
contradiction inherent in advocating use cases as the primary mechanism for
communicating and verifying system requirements with users. Advocates of use
cases point to the ease with which they can be understood, as they describe a
process from start to finish. Not surprisingly, a significant body of research in
cognitive science deals with how people think procedurally. For example, Schank
and Abelson’s (1977) work on scripts deals with the sequencing of ordinary and
exceptional events involved in a goal-oriented activity. Scripts provide a mechanism
by which people can understand the temporal relationship in a list of events,
including inferences about events that are not explicitly stated in a description
(Bower, Black, & Turner, 1979).

Since people can think in either process-oriented or object-oriented modes,
we postulate that both process-oriented and object-oriented models can be
understood by users and are appropriate for verifying different aspects of applica-
tion requirements. This suggests that advocating use cases for work with users,
while isolating users from the class models that are the primary basis for the design
of an object-oriented architecture, is not necessary. Moreover, the peripheral and
diffuse role of objects in use cases is a potential source of difficulty in developing
class models from use cases and verifying whether they are a good model of the
domain’s category structure as understood by users. It may be more appropriate
to use class models directly as a mechanism for communicating and verifying the
structure of the application domain with users.

CALL FOR RESEARCH
The analysis presented above is purely theoretical. As far as we are aware,

advocates of use cases do not offer empirical evidence that they are a “good”

Dobing & Parsons 123

mechanism for communicating with users. “Goodness” of use cases could be
ascertained by developing a standard of effective communication against which use
cases can be evaluated. Alternatively, “goodness” could be established in a relative
sense by comparing them to other mechanisms for communicating the same
information with users. At present, the value of use cases has not been established
empirically in either of these senses.

Similarly, although we have presented an argument that use cases may be
inadequate for developing class models, such inadequacy has not been demon-
strated empirically. In addition, although research on classification points to the
naturalness of category structures in organizing information about things in the
world, there are few empirical studies addressing the ability of users to understand
class models. The few studies that have addressed this were conducted prior to the
development of the particular class modeling technique that is part of UML. For
example, Vessey and Conger (1994) found that novice analysts were better able
to specify requirements using process- and data-oriented methodologies than using
object-oriented methodologies.

In addition, we have identified the growing tendency for use cases to include
design or implementation decisions that could be a possible impediment to effective
process design in systems development. Despite the attention paid by some to the
role of use cases in process reengineering, there is reason to believe that popular
use case structures may anchor developers to particular solution approaches and
thereby narrow the scope of possible solutions considered. However, there is no
empirical evidence that such adjustment biases occur in practice.

In view of the movement toward UML as a standard modeling language in
practice, the paucity of empirical research on the effectiveness of various modeling
techniques and prescriptions in UML is troubling. We have offered a theoretical
framework for studying three issues: premature inclusion of design decisions, the
adequacy of use cases for extracting class models, and the justification for choosing
use cases as the primary mechanism for developer interaction with users. From
these perspectives, we think it is important to conduct a range of empirical studies
to evaluate the various modeling components of UML.

First, research is needed to examine whether including design and implemen-
tation details in use cases leads to anchoring and adjustment problems with respect
to effective process redesign. This question can be addressed directly through lab
experiments in which developers design a system starting from either abstract use
cases or use cases in which design or implementation decisions are stated. In each
group, the “innovativeness” of the resulting designs relative to existing processes can
be measured. To measure the external validity of such results, correlational field
studies of object-oriented development using UML can also be undertaken to

124 Understanding the Role of Use Cases in UML

measure the relationship between the structure of use cases used and the extent to
which implementations achieve effective redesign.

Second, research is needed to test the assertion that, since use cases do not
focus on objects, it will be difficult to extract a class model from a set of use cases.
Although it may be possible to test this in a controlled laboratory experiment, it
would be difficult to avoid biases in the development of use cases that might
influence the ability to extract class models. Consequently, an appropriate method
for examining the degree to which use cases support the development of class
models (and, more generally, how class models are developed and verified) would
be surveys and/or case studies of the progression from use case models to class
models in projects that use UML. Among the variables to measure are: the extent
to which use cases are the exclusive mechanism for communication and verification
of requirements with users; the extent to which use cases drive the development of
the class model; problems encountered in using use cases to develop the class
model; perceptions about the causes of such problems; and approaches that are
used to deal with these problems.

Third, research is needed to examine whether users are capable of directly
reading and understanding class models, as well as other UML models. In addition,
there is a need to study whether use cases add value (e.g., in ease of understanding
or ability to capture additional information relative to other models in UML). For
this type of study, laboratory experiments offer the ability to enforce necessary
control to permit useful comparisons across groups. Several issues need to be
resolved in conducting this kind of study. For example, use cases include process
or task information, while class diagrams do not. Hence, comparisons between use
cases and class models must be restricted to object/attribute/relationship identifi-
cation, or class models must be used in conjunction with other UML models to
conduct comprehensive comparisons with use cases.

Table 1 summarizes a research framework for studying the need for, and
effectiveness of, use cases in UML.

CONCLUSIONS
UML is a modeling language for object-oriented development that grew out

of the combination of three distinct approaches developed in the early 1990s. Much
of the conceptual foundation of the language comes out of issues in object-oriented
programming (Booch, 1994), and there is little evidence about the extent to which
it is appropriate as a language for modeling an application domain or system
requirements. In short, we feel there is a strong need for academic research to
evaluate the usefulness of UML and determine its limitations for modeling
requirements. Here, we have offered a framework for evaluating the roles of, and
relationships between, use cases and class models in the UML. Similar research is

D
obing & Parsons 125

needed to understand the capabilities and lim
itations of the other m

odels in the
language.

Table 1: A Framework for Empirical Research on Use Cases

Research Question Primary Primary Methodology
Independent Dependent
Variable Variable

Do design/implementation details in use Use case structure Process innovation Experiment;
cases impede process redesign efforts? Case study
Can class models be effectively extracted Use cases Class model Case study;
from use cases? completeness Developer surveys
Do use cases facilitate communication Communication User understanding Experiments;
between developers and users? medium (use cases or Domain coverage User surveys

class models)

126 Understanding the Role of Use Cases in UML

ENDNOTE
1 This research was supported in part by a research grant from the Social Sciences

and Humanities Research Council of Canada to Jeffrey Parsons.

REFERENCES
Beck, K. and Cunningham, W. (1989). A laboratory for teaching object-oriented

thinking. ACM SIGPLAN Notices, 24(10), 1-6.
Blaha, M. and Premerlani, W. (1998). Object-Oriented Modeling and Design

for Database Applications. Upper Saddle River, NJ: Prentice Hall.
Booch, G. (1994). Object-Oriented Analysis and Design with Applications

(2nd ed.). Redwood City, CA: Benjamin/Cummings.
Booch, G. (1996). Object Solutions: Managing the Object-Oriented Project.

Reading, MA: Addison-Wesley.
Booch, G., Jacobson, I. and Rumbaugh, J. (1999). The Unified Modeling

Language User Guide. Reading, MA: Addison-Wesley.
Bower, G., Black, J. and Turner, T. (1979). Scripts in memory for text. Cognitive

Psychology, 11, 177-220.
Brown, D. (1997). An Introduction to Object-Oriented Analysis: Objects in

Plain English. New York: John Wiley & Sons.
Coad, P. (1995). Object Models: Strategies, Patterns, and Applications.

Englewood Cliffs, NJ: Yourdon Press.
Constantine, L. L. and Lockwood, L. A. D. (2000). Structure and style in use cases

for user interface design. In Van Harmelen, M. and Wilson, S. (Eds.), Object
Modeling User Interface Design. Reading, MA: Addison-Wesley. Available:
http://www.foruse.com. (June 12, 2000).

Dewitz, S. (1996). Systems Analysis and Design and the Transition to Objects.
New York: McGraw-Hill.

Evans, G. (1999). Why are use cases so painful? Thinking Objects, [on line serial],
1(2). Available: http://evanetics.com/TONewsletters/thinking-v1n2.htm. (June
12, 2000).

Hammer, M. and Champy, J. (1993). Reengineering the Corporation: A
Manifesto for Business Revolution. New York: Harper-Collins.

Harmon, P. and Watson, M. (1998). Understanding UML: The Developer’s
Guide. San Francisco, CA: Morgan Kaufmann.

Holland, I. and Lieberherr, K. (1996). Object-Oriented Design. ACM Comput-
ing Surveys, 28, 273-275.

IBM Object-Oriented Technology Center. (1997). Developing Object-Oriented
Software. Upper Saddle River, NJ: Prentice Hall.

Jacobson, I. (1987). Object-oriented development in an industrial environment.

Dobing & Parsons 127

OOPSLA’87 Conference Proceedings, SIGPLAN Notices, 22(12), 183-
191.

Jacobson, I., Booch, G. and Rumbaugh, J. (1999). The Unified Software
Development Process. Reading, MA: Addison-Wesley.

Jacobson, I., Christerson, M., Jonsson, P. and Overgaard G. (1992). Object-
Oriented Software Engineering: A Use Case Driven Approach. Reading,
MA: Addison-Wesley.

Jacobson, I., Ericsson, M. and Jacobson, A. (1994). The Object Advantage:
Business Process Reengineering with Object Technology. Reading, MA:
Addison-Wesley.

Kilov, H. and Ross, J. (1994). Information Modeling: An Object-Oriented
Approach. Englewood Cliffs, NJ: Prentice Hall.

Lakoff, G. (1987). Women, Fire, and Dangerous Things: What Categories
Reveal about the Mind. Chicago, IL: University of Chicago Press.

Larman, C. (1998). Applying UML And Patterns: An Introduction to Object-
Oriented Analysis and Design. Upper Saddle River, NJ: Prentice Hall.

Lockheed Martin Advanced Concepts Center and Rational Software Group.
(1996). Succeeding With The Booch And OMT Methods: A Practical
Approach. Menlo Park, CA: Addison-Wesley.

MacMaster, B. (1997). Saving time with “use cases.” Computing Canada,
23(21), 52.

Medin, D. and Smith, E. (1984). Concepts and concept formation. Annual Review
of Psychology, 35, 113-138.

Meyer, B. (1997). Object-Oriented Software Construction. Upper Saddle
River, NJ: Prentice Hall.

Navathe, S., Elmasri, E. and Larson, J. (1986). Integrating user views in database
design. IEEE Computer, 19, 50-62.

Norman, R. (1996). Object-Oriented Systems Analysis And Design. Upper
Saddle River, NJ: Prentice Hall.

Parsons, J. and Wand, Y. (1997). Using objects in systems analysis. Communi-
cations of the ACM, 40(12), 104-110.

Plous, S. (1993). The Psychology of Judgment and Decision Making. New
York: McGraw-Hill.

Pooley, R. and Stevens, P. (1999). Using UML: Software Engineering with
Objects and Components. Reading, MA: Addison-Wesley.

Ring, P. S. and Van de Ven, A. H. (1989). Formal and informal dimensions of
transactions. In Van de Ven, A. H., Angle, H. L. and Poole, M. S. (Eds.),
Research on the Management of Innovation: The Minnesota Studies, 171-
192. New York: Harper & Row.

128 Understanding the Role of Use Cases in UML

Rosenberg, D. and Scott, K. (1999). Use Case Driven Object Modeling with
UML. Reading, MA: Addison-Wesley.

Rubin, K. and Goldberg, A. (1992). Object behavior analysis. Communications
of the ACM, 35(9), 48.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and W. Lorensen (1991).
Object-Oriented Modeling and Design. Englewood Cliffs, NJ: Prentice Hall.

Satzinger, J. and Orvik, T. (1996). Object-Oriented Approach: Concepts,
Modeling, and System Development. Danvers, MA: Boyd & Fraser.

Schank, R. and Abelson, R. (1977). Scripts, Plans, Goals, and Understanding.
Hillsdale, NJ: Erlbaum.

Schneider, G. and Winters, J. P. (1998). Applying Use Cases: A Practical
Guide. Reading, MA: Addison-Wesley.

Tversky. A. and Kahneman, D. (1974). Judgment under uncertainty: Heuristics and
biases. Science, 185, 1124-1131.

Vessey, I. and Conger, S. (1994). Requirements specification: Learning object,
process, and data methodologies. Communications of the ACM, 37(5), 102-
113.

White, I. (1994). Rational Rose Essentials: Using the Booch Method. Redwood
City, CA: Benjamin/Cummings.

Wirfs-Brock, R., Wilkerson, B. and Wiener, L. (1990). Designing Object-
Oriented Software. Englewood Cliffs, NJ: Prentice Hall.

Felice, Leonardi, Favre & Mauco 129

Chapter 9

Enhancing a Rigorous Reuse
Process with Natural Language

Requirement Specifications

Laura Felice, Carmen Leonardi, Liliana Favre, and Maria Virginia Mauco
Universidad Nacional del Centro de la Pcia. de Buenos Aires, Argentina

Reusability is the ability to use the same software elements for constructing
many different applications. Formal specifications can help to semiautomatic
design processes based on reusable components. However, during the first
stages of development, when the interaction with the stakeholders is crucial,
the use of client-oriented requirements engineering techniques seems to be
necessary in order to enhance the communication between the stakeholders
and the software engineers. In this chapter, we propose a systematic reuse
approach that integrates natural language requirement specifications with
formal specifications in RSL (RAISE Specification Language). On the one
hand, some heuristics are described to develop a formal specification in RSL
starting from models belonging to the Requirements Baseline. On the other
hand, we have defined a reusable component model that integrates RSL
specifications at different levels of abstraction, as well as presented a process
with reuse based on the model.

INTRODUCTION
The challenge of the software engineering is to satisfy the increasing demand

of software systems in an economic and rapid way. Reusability software tech-
niques based on component library provide a great potential to face it.

Previously published in Managing Information Technology in a Global Economy, edited by Mehdi
Khosrow-Pour. Copyright © 2001, Idea Group Publishing.

130 A Rigorous Reuse Process with Natural Language Requirement Specifications

The main problems associated with reusability techniques are:
· How to define reusable components library
· How to identify reusable components in a library
· How to integrate “implementation pieces” in a consistent

system implementation
Our work hypothesis is that the formal specification of reusable components

and the development of rigorous methods for their systematic reuse can help building
“correct” and efficient software. “If, instead of being developed for just one project,
a software element has the potential of serving again and again for many projects,
it becomes economically attractive to submit it to the best possible quality tech-
niques, such as formal specifications of components” (Meyer, 1997). There are
many works which prove that software reusability can be addressed from formal
descriptions (Krueger, 1992; Mili et al., 1995; Zaremski & Wing, 1997). Besides,
formal descriptions are only accessible to specialists. If we want to construct a new
software system we need other kind of techniques to represent the domain in which the
software will be inserted. Those representations may be familiar to the stakeholder,
whose participation in the first stages of development is crucial.

This work integrates and extends previous results from our research (Favre
et al., 2000; Mauco, 2000). We propose a reuse strategy that integrates informal
specifications with a reusable component library. In particular we use natural lan-
guage-oriented models belonging to Requirements Baseline (Leite et al., 1997).
These models are used to produce incomplete algebraic specifications in RSL
(George et al., 1992), the formal specification language used in RAISE method. Those
specifications are the input for the second part of the strategy, the reuse process,
whose final result is a complete imperative specification in RSL, directly connected to
code through the RAISE method. The reuse process is based on the RC model which
integrates specifications at different levels of abstraction. The manipulation of RC com-
ponents by means of reuse operators is the basis for the reusability. An essential step in
the reuse process is component identification, not only because of its complexity, but
also because is the key to the success of the overall process.

THE REQUIREMENTS BASELINE
The Requirements Baseline (Leite, 1997) is a structure which incorporates

descriptions about a desired system in a given macrosystem. It is composed of
five views, but in this paper we will deal only with the Lexicon Model View and
the Scenario View.

The Lexicon Model View
It is implemented by the LEL (Language Extended Lexicon). The LEL is a

structure that allows the representation of significant terms in the studied

Felice, Leonardi, Favre & Mauco 131

macrosystem. It delimits external language and enriches the internal one by pro-
viding each symbol with semantics. For each symbol we have a name and a set of
synonyms, notions, describing its denotation, and behavioral responses, that de-
scribe its connotation.

LEL terms define objects (passive entities), subjects (active entities), phrasal
verbs and states. Figure 1 shows two terms of the LEL for a Credit Card System.
The underlined terms correspond to other LEL entries.

Figure 1: Examples of LEL terms

BANK CARD / CREDIT CARD / CARD:
Notions:
- Card to carry out bank operations in teller machines and shops.
- It has a PIN
- It belongs to a holder
- It may have additional cards.
- It has an expiration date.
Behavioral responses:
- It can be stolen, lost, cancelled or invalid.
- It may be renewed.
PIN
Notions:
- It is a secret number that uniquely identifies a credit card.
Behavioral responses:
- It is required for any bank operation in a teller machine.
- It may be modified by the holder.

The Scenario View
 Scenarios describe macrosystem situations using natural language descrip-

tion as their basic representation. They are naturally connected to the LEL. In
Figure 2 the components of a scenario are described.

Figure 2: Components of a scenario

Title: identifies a scenario.
Objective: describes the purpose of a scenario.
Context: defines geographical and temporal locations and
preconditions.
Resources: identify passive entities with which actors work.
Actors: define entities actively involved in a scenario, generally a person
or an organization.
Set of episodes: a number of related episodes which represent actions
performed by actors to fulfill the objective using resources. An episode
may be explained as a scenario.

132 A Rigorous Reuse Process with Natural Language Requirement Specifications

Figure 3: Partial Description of a Scenario

Constraints (non-functional requirements) may be applied to Context, Re-
sources or Episodes. Exceptions, applied to episodes, cause serious disruptions
in a scenario, asking for a different set of actions. Figure 3 shows a partial descrip-
tion of a scenario for the Credit Card System. Underlined terms represent LEL
symbols connecting both models.

THE RSL LANGUAGE
The aim of the project RAISE (Rigorous Approach to Industrial Software

Engineering), was to develop a language, techniques and tools that would enable
industrial use of formal methods. The results of this project include the RSL Lan-
guage which allows us to write formal specifications. In addition to this, a method
to carry out developments based on such specifications, and a set of tools to assist
in edition, checking, transforming and reasoning about specifications (Bjorner,
2000) are provided.

A development in RAISE begins with an abstract specification and gradually
evolves to concrete implementations. The first specification is usually an abstract
applicative one, for example functional or algebraic. A first algebraic specification
should have:
• A hierarchy of modules whose root is the system module.
• A module containing types and attributes for the non-dynamic identified enti-

ties.
• The signatures of the necessary functions associated with types. These func-

TITLE: Carry out a common withdrawal
OBJECTIVE: A holder wants to carry out a withdrawal in a teller machine with a
card
CONTEXT: The holder is operating the Credit Card System in a teller machine. Pre-
condition: The holder has a valid card.
ACTORS: Holder
RESOURCES: Bank Account
EPISODES:
The holder chooses the option withdrawal and an amount to extract.
IF the bank account has enough funds
THEN the amount is debited from the bank account
IF the bank account has not got enough funds
THEN the teller machine cancels the operation.
...

Felice, Leonardi, Favre & Mauco 133

Figure 4. Card Scheme

tions should be categorized as generators and as observers. Besides, precon-
ditions should be formulated for partial functions by means of functions, called
guards.

• The specification may contain invariants expressed asfunctions.
In Figure 4 a specification in an algebraic style is shown.

THE RC MODEL
The Reusable Component model (RC) describes object classes at three dif-

ferent conceptual levels: specialization, realization and implementation.
The specialization level describes a hierarchy of incomplete algebraic speci-

fications in RSL as an acyclic graph. Specialization relations relate the nodes. In
this context, it must be verified that if P(x) is a provable property about objects x
of type T, then P(y) must be verified for every object y of type S, where S is a
specialization of T.

Every leaf in the specialization level is associated with a subcomponent at the
realization level. A realization subcomponent is a tree of complete specifications in
RSL; where the root is the most abstract definition; the internal nodes correspond
to different realizations of the root and finally, the leaves correspond to subcom-
ponents at the implementation level.

scheme GLOBAL_TYPES =
class
 type
 Date,
 Card_id,
end

T
scheme CARD =
class
 object
 H: HOLDER,
type
 Card :: Pin: Nat Holder: H.Holder AddCards: T.Card_id-set ExpDate: T.Date
CardState: State,
 State == Valid | Stolen | Invalid | Lost | Cancelled
 value
 RenewCard: Card x T.Date → Card
 ...
 pre is_valid(acard),
 ChangeCardState: Card x State→ Card,
 ...
end

134 A Rigorous Reuse Process with Natural Language Requirement Specifications

If E1 and E2 are specifications, E1 can be realized by E2 if E1 and E2 have the
same signature and every model of E2 is a model of E1 (Hennicker & Wirsing, 1992).

The realization level allows us to distinguish the design decisions related to
the choice of physical data structure. Every specification at the realization level is
linked to subcomponents at the implementation level.

The implementation level groups a set of imperative schemes in RSL associ-
ated with code. RAISE method provides translation processes which start with a
final RSL specification and produce a program in some executable language, for
example Ada and C.

Transforming RC Components
 The transformation operators on RSL algebraic specifications are infor-

mally described as follows:
Rename: changes the name of sorts or operations.
Hide: forgets parts of a specification.
Extend: adds sorts, operations or axioms to a specification.
Combine: combines two or more specifications in only one.
 Building operators on specifications can be extended to manipulate sub-

components in the realization level. Informally, this implies simultaneous applica-
tion of an operator to every node of the subcomponent. The subcomponents are
inductively defined by the operator: realize(S,{RS1,RS2,….}) where S is a speci-
fication and RS1, RS2,…are reusable specifications (these roots are realizations of
S). rename_r, hide_r, extend_r, combine_r operators were defined in the realiza-
tion level. For example, Rename-r operator is inductively defined by
Rename_r(realize(SP,{SP1,SP2,..SPn}),ρ)=
realize(rename(SP,ρ),{rename_r(SP1,ρ), rename_r(SP2, ρ), ..., rename_r(SPn,
ρ)})

Given a specification SP with signature Σ=sig(SP), a signature Σ’ and a
morphism signature ρ:Σ→ Σ’ that represents a rename; rename(SP, ρ) is a speci-
fication with signature Σ’. Rename_ρ is defined as a renaming of its root and,
recursively, all its children.

Building operators for specifications are extended to manipulate subcompo-
nents at the implementation level. Informally, this implies application of an opera-
tor to every scheme of a subcomponent. Subcomponents are inductively defined
by the operator: implement (E,{ESQ1, ESQ2 ,…. ESQn }), where E is a specifi-
cation and ESQ1, ESQ2 ,… ESQn are schemes of imperative versions in RSL.
rename_i, hide_i, extend_i and combine_i operators are defined inductively, for
example rename_i is defined by

rename_i(implement(E,{ESQ1,…. ESQn }),ρ)=
implement(rename(E,ρ),{rename_i(ESQ1,ρ),

,….rename_i(ESQn,ρ)})

Felice, Leonardi, Favre & Mauco 135

Figure 5: Overall Process

FROM REQUIREMENTS MODELS TO RSL
IMPERATIVE SPECIFICATIONS

As it was mentioned in the introduction, our objective is to construct impera-
tive specifications starting from natural language-oriented models. Therefore, in
our proposal two essential phases are distinguished: Specification and Reuse. In
the Specification phase an incomplete algebraic RSL specification (IAS) is built
starting from the LEL and Scenario models. IAS is then used as input for the
Reuse phase, applying the operators presented previously. to match RC compo-
nents with IAS. The final specification is an imperative complete RSL Specifica-
tion (ICS). A prototype HAREA assists in the retrieval and adaptation of RC
components (Fariña & Reale, 1999). It implements not just exact matching be-
tween components, but many kinds of relaxed matches. In Figure 5 the strategy
through like-SADT (Ross, 1980) is shown, followed by a detailed description of
its different phases.

 Once we obtain the imperative specification in RSL, a code for the imple-
mentation in a programming language can be produced by RAISE method in a
semi-automatically way.

Specification Phase
 In this phase we present some heuristics to define a first specification in

RSL starting from the LEL and scenarios models. The main tasks of the proposal
are Types Identification and Functions Definition. However these steps are not
sequential, they can be overlapped or carried out in cycles.

Specification
Phase Reuse ProcessIncomplete

Algebraic
Spec

LEL model

Scenario model
Complete
Imperative

Spec

Specification
Heuristics

RSL

User

LEL &
Scenarios

metaModel
RC Model

Reuse
Operators

HAREA

Types Identification
The following heuristics are used for the Identification of types.

• Model the subjects in the LEL as types in RSL. These subjects are the actors
in the scenarios; so they always have a significant and “complex” behavior
which justifies their modelization as a type.

• Analyze the relevance of each term which corresponds to an object in the LEL
(a resource in the scenarios), in order to define it as a type or to include it as an
attribute of a type. For example, the term Card (Figure 1) that represents an
object in the LEL is defined as a type. Mean while the term PIN (Figure 1),
also an object in the LEL, becomes an attribute of the type Card.

• Determine the attributes for each identified type by analyzing the notions of the
corresponding term in the LEL, in order to find out the properties that charac-
terize it. It is important to analyze the behavioral responses of the terms which
correspond to the LEL objects and were modeled as types; due to some pos-
sible appearances of attributes as a result of operations applied to that object.
When defining attributes in general, two cases have to be considered:
 - The property is directly modeled as an attribute of the type since it repre-
sents the property name. For example, for the term Card the properties Holder,
Expiration Date, Additional Cards and PIN, are individually modeled as an
attribute.
- The term has several properties that model its different states or concrete
values. In this case, there are two alternatives depending on the software
developer. The first one is to model only one attribute whose domain is the set
of values which appeared in the term and the second one is to define a Boolean
attribute for each property. Taking into account that in the term Card four pos-
sible states appear stolen, invalid, lost or canceled; we have decided to define
a attribute called CardState containing five possible values, the four previous
and a ValidState. The last one appears implicitly in the requirement models,
but it is convenient to define it in a solution model.

Functions Definition
In this section, we describe the heuristics related to the definition of functions.

• Define the functions considering the classification of the LEL terms that were
modeled as classes:

- if the term is a subject, define each behavioral response as a function, choosing
a name that summarizes it. To determine its input values and the output value it
is necessary to analyze in detail the scenarios in which this behavioral response
appears.

- if the term is an object, analyze the definition of each behavioral response.

Several behavioral responses may modify or access the same attribute. It is the
software engineer’s decision either to define one function for each behavioral
response or to define a single function managing the different variants through
the function parameters. For example, for the type Card it is possible to define
five functions (SetStolen, SetLost, SetInvalid, SetValid, Set Cancelled) or a
single one ChangeCardState(card, state).

• Determine if the functions are partial or total. For each function, the scenarios in
which it appears should be analyzed in order to find possible restrictions, ex-
ceptions to the clause If Then. If some of these components do exist, the
function is defined as partial and the associated sentence becomes the precon-
dition, modeled as a guard. For example, for the function CommonWithdrawal
of the type BankAccount we analyzed the scenario “Carry out a common
withdrawal” (Figure 3) and we found a clause If Then to verify the account
balance. Therefore, CommonWithdrawal is a partial function with precondi-
tion defined by the guard EnoughFunds(account).

• Complete the definition by adding functions to return the value of each at-
tribute of the corresponding type, in case they had not been defined in the
previous analysis.

After all the types are identified, they are analyzed to re-design the specifica-
tion from a global perspective. For example, if a particular type is used in several
types of the system, then it is modeled as global. A typical example is the type
Date.

 Figure 4 shows an example of one incomplete algebraic specification ob-
tained by applying the heuristics presented before in the Credit Card System.

The Reuse Process
The next phase is to transform the incomplete algebraic specification into

complete imperative specification by reusing existing components. The steps of
the method are depicted in Figure 6:

Identification
Stepset of

Incomplete
Algebraic

components
Ci

Complete
Imperative

Specification

Specialization
Level

User

HAREA

Reuse
S-Operators

set of
identified

components
Ci

Adaptation
Step

Realization
Level

 set of
implemented

components Ci

Reuse
R-Operators

Composition
Step

Implementation
Level

Reuse
I-Operators Composition Constructors

Decomposition
Step

Composition Constructors

Incomplete
Algebraic

Specification

Figure 6: Reuse Process

138 A Rigorous Reuse Process with Natural Language Requirement Specifications

In Decomposition step the decomposition of a goal specification Eg into sub-
specifications E1, E2, En is formalized.

In Identification step (described in detail in next section), it must be identified,
for each specification Ei a component Ci (in the specialization level) and a se-
quence s1,s2,...,sn of RSL specifications, verifying specialization relations. It must
be selected a leaf in Ci as a candidate to be transformed. The identification of a
component is correct if rename, hide and extend operators can modify it to match
the query Ei.

In Adaptation step, not only a leaf in the subcomponent associated in the
realization level but also a sequence of operators used in the previous steps are
applied. Then, a scheme in the implementation level is selected and the same
operators in the selected leaf are applied. Finally, in Composition step, the sub-
specifications Ei and their implementations are composed.

RC Component Identification
In this section, the use of specification matching to identify RC components

are described. In the identification process, we search for all RC-components that
satisfy a given query. This process has two essential steps: signature matching and
semantic matching. The signature matching enables a syntactic comparison of a
query specification with specifications existing in RC reusable components. The
semantic matching compares the specifications dynamic behavior. The bases of
the signature matching come from Zaremski and Wing (1997), even though they
were adapted to the identification of RC components.

The signature of a specification consists of a set of sorts and a set of opera-
tions, each operation being equipped with a particular functionality.

Let L=<SL, FL > be the signature of a library specification and Q=<SQ,FQ>
the signature of a query specification where SL and SQ are set of sorts and FL and
FQ are set of operation symbols, the signature matching is defined as follows:

This means that given a query specification Q, a RC library C and a predicate
P, it gives back the RC components that satisfy P. The signature matching is based
on operations matching. Different kinds of operation matching are described bel-
low:
Let OL: TL1 X TL2 X→ TLm and OQ: TQ1 X TQ2 X→ TQm, be two
operations, the exact matching of them is defined as follows:

The exact matching is a good starting point but it is very restrictive. There
may be useful functions in the library, which may be more specific or more general
and after being found can be adapted by means of the application of reuse opera-
tors. Two relaxed matchings, the specialized and the generalized matchings, that

Felice, Leonardi, Favre & Mauco 139

enable operations identification in these case are defined as follows:

 Generalized Matching : MatchG (OL, OQ) = OL ≥ OQ

where “OL ≥ OQ” expresses that OL is “more general” than OQ. This means that
the argument types in OQ are specializations of the types associated in OL.

 Specialized Matching : MatchS (OL, OQ) = OL ≤ OQ

where “OL ≤ OQ” expresses that OL is “more specific” than OQ. This means that
the argument types in OL are specializations of the types associated in OQ.

Figure 7: R-Credit_Card Specification

scheme GLOBAL_TYPES =
 class
 type
 Date,
 CR_CID,
 end

T
scheme
R-CREDIT_CARD=
 class
 type

 R-Credit_Card :: CrCId: T.CR_CID Additonal: Card-set Pin: String
 ValidDate: T.Date State: StateCard Type: TypeCard Bank: String Limit:
Real
 StateCard == Valid | Invalid | Stolen | Lost | Cancelled
 TypeCard == International | National | Gold | Platinum

 value
 GetExpDate: R-Credit_Card Ą T.Date,
 GetState: R-Credit_Card Ą StateCard,
 GetPIN :R-Credit_Card Ą Pin,
 GetBank: R-Credit_Card Ą String,
 GetType: R-Credit_Card Ą TypeCard,
 Cr_Card?: R-Credit_Card x T.CR_CID Ą Bool
 ChangeState: R-Credit_Card x State Ą R-Credit_Card,
 Additional: R-Credit_Card Ą Card-set,
 NewPIN: R-Credit_Card x PinĄ R-Credit_Card,
 Valid_Cr_Card: R-Credit_Card Ą Bool
 DateExp: T.Date x R-Credit_Card Ą Bool
 LimitCard: R-Credit_Card Ą Real

 axioms
…….
end

140 A Rigorous Reuse Process with Natural Language Requirement Specifications

 The exact, generalized and specialized matchings of operations have been
extended for signatures of RSL specifications:

 S-Exact Matching
 S-Match E (L, Q) = ∃ a mapping AF : FQ → FL such thatAF is one-to-

one and onto
 and ∀ OQ ∈ FQ: Matchf(AF(OQ), OL)

 S-Generalized Matching
 S-Match E (L,Q) = ∃ a mapping AF : FQ →FL such that AF is onto
 and ∀ OQ ∈ FQ: Matchf (AF(OQ), OL)

 S-Specialized Matching
 S-Match S (L,Q) = S-Match G (Q,L)

Signature acts as a “filter” that eliminates obvious non-matches before trying
the semantic match. Hence, for the correct reuse of a component it remains to
check that the semantic requirements of the goal specification, expressed by the
axioms, are satisfied by a component. The RAISE tools can help to the semantic
matching.

AN EXAMPLE
In this section we describe a simple example in order to show the reuse

process.
Supposing that a RC component has to be adapted to match the specifica-

tion given in Figure 4, let R-Credit_Card (Reusable Credit Card) be a specifica-
tion belonging to a reusable component R_Card_System (Reusable Card
System)(Figure 7).

When identifying R-Credit_Card as a candidate to be modified to match the
query CARD, the following aspects are taken into account. There are more types
involved in the R_Credit-Card definition, such as Bank and Type of Card. Be-
sides, some of its functions are linked with controls for validation that were not
derived from the initial requirements. For example the validation of a card
(Valid_Cr_Card), the existence of a credit card (Cr_Card?) and so on. Thus, we
say that the arguments of the R_Credit-Card functions are ‘more specific’ than
the arguments of Cards functions.

 For this reason the matching selected for operations and signature match-
ing is the ‘Specialized Matching’. The R_Credit-Card signature is a sub-signature

Felice, Leonardi, Favre & Mauco 141

of the CARD signature, under the following renaming ρ and restriction r.
ρtypes = {R-Credit_Card: Cards; CR_CID: HOLDER; Additional:

AddCards; Card-set:
Card-collection; ValidDate: ExpDate; State:CardState}

ρoperations = {NewCard:RenewCard; Additional:AddCards;
GetPIN: PIN?; ChangeState: ChangeCardState}

r= {GetExpDate: undefined; Cr_Card?: undefined; GetState: undefined;
NewPIN: undefined; Valid_Cr_Card: undefined; DateExp:undefined; GetBank:
undefined;

 GetType: undefined}

CONCLUSIONS
We have described a reuse process based on the integration of requirements

engineering and reuse techniques with the RAISE method; hoping that our ap-
proach may be integrated with other rigorous methods. As regards the possible
contributions of our work the following concepts may be considered:

• The definition of heuristics to obtain RSL incomplete algebraic specifica-
tions from LEL and Scenario models.

• The definition of the RC model.
• The definition of a rigorous reuse process to transform RSL algebraic

specifications into RSL imperative versions.
Besides, it is worth mentioning that Requirements acquisition as well as

modelization are not deeply addressed by RAISE METHOD; meanwhile Re-
quirements Baseline, more specifically LEL and Scenario Models, are techniques
accepted and used by the requirements community. Those specifications not only
model the behavior, the vocabulary of the system and its environment, but also are
easily validated by the stakeholders. Therefore, we think the integration of re-
quirement techniques with formal RSL specifications could enhance the overall
process.

We would like to mention that our proposal has been partially implemented
by one prototype, HAREA, that assists in the identification step of the reuse pro-
cess. Finally, we will focus on the refinement of the heuristics by applying them in
real and more complex systems.

REFERENCES
Bjorner, D. (2000) Software engineering: A new approach. Lecture Notes, Tech-

nical University of Denmark.
Fariña and Reale. (1999). Object-oriented reusability through formal specifica-

142 A Rigorous Reuse Process with Natural Language Requirement Specifications

tions. Undergraduate Thesis. Universidad Nacional del Centro. Argentina.
Favre, Felice, Mauco and Leonardi. (2000). From RAISE specifications to ob-

ject-oriented code: A reusable component model. Proc. Intersymp’2000.
Germany.

George, C., Haff, P., Havelund, K., Haxthausen, A., Milne, R., Nielsen, C., Prehn,
S. and Ritter, K. (1992). The RAISE Specification Language. Englewood
Cliffs, NJ: Prentice Hall.

George, C., Haxthausen, A., Hughes, S., Milne, R., Prehn, S. and Pedersen, J.
(1995). The RAISE Development Method. Englewood Cliffs, NJ: Prentice
Hall.

Hennicker, R. and Wirsing, M. (1992). A formal method for the systematic reuse
of specifications components. Lecture Notes in Computer Science 544,
Springer-Verlag.

Krueger, C. (1992). Software reuse. ACM Computing Surveys, 24(2), June.
Leite, J., Rossi, G., Balaguer, F., Maiorano, V., Kaplan, G., Hadad, G. and

Oliveros, A. (1997). Enhancing a requirement baseline with scenarios. Require-
ment Engineering Journal, 2(4), 187-198.

Mauco, Leonardi, Favre and Felice. (2000). Enhancing formal techniques with
requirements engineering models. Proc. Intersymp’2000, Germany.

Meyer, B. (1997). Object-Oriented Software Construction (Second Edition).
Englewood Cliffs, NJ: Prentice Hall.

Mili, H., Mili, F. and Mili, A. (1995). Reusing software: Issues and research
directions. IEEE Transactions on Software Engineering, June, 528-562.

Ross, D. (1980). Structured analysis (SA): A language for communicating ideas.
In Freeman and Wasserman. (Eds.), Tutorial on Design Techniques, 107-
125. IEEE Computer Society Press.

Zaremski, A. and Wing, J. (1997). Specification matching of software compo-
nents. ACM Transactions on Software Engineering and Methodology
(TOSEM), 6(4), 333-369.

Price, Tryfona & Jensen 143

Chapter 10

Extended Spatiotemporal UML:
Motivations, Requirements,

and Constructs
Rosanne Price

Monash University, Australia

Nectaria Tryfona and Christian S. Jensen
Aalborg University, Denmark

This chapter presents a conceptual modeling language for spatiotemporal
applications that offers built-in support for capturing spatially referenced,
time-varying information. More specifically, the well-known object-oriented
Unified Modeling Language (UML) is extended to capture the semantics of
spatiotemporal data. The extension, Extended Spatiotemporal UML, maintains
language clarity and simplicity by introducing a small base set of fundamental
modeling constructs: spatial, temporal, and thematic. These constructs can
then be combined and applied at attribute, attribute group, association, and/
or class levels of the object-oriented model; where the attribute group is an
additional construct introduced for attributes with the same spatiotemporal
properties. A formal functional specification of the semantic modeling
constructs and their symbolic combinations is given and an example is used
to illustrate the simplicity and flexibility of this approach.

INTRODUCTION
Spatiotemporal applications have been the focus of considerable attention recently.

The need for a temporal dimension in traditional spatial information systems and for high-
level models useful for the conceptual design of the resulting spatiotemporal systems has
become clear. Although having in common a need to manage spatial data and their

Previously published in the Journal of Database Management, vol.11, no.4, Copyright © 2000,
Idea Group Publishing.

144 Extended Spatiotemporal UML

changes over time, various spatiotemporal applications may manage different types
of spatiotemporal data and may be based on very different models of space, time, and
change. For example, the term spatiotemporal data is used to refer both to temporal
changes in spatial extents, such as redrawing the boundaries of a voting precinct or
land deed, and to changes in the value of thematic (i.e., alphanumeric) data across
time or space, such as variation in soil acidity measurements depending on the
measurement location and date. A spatiotemporal application may be concerned with
either or both types of data. This, in turn, is likely to influence the underlying model of
space employed, e.g. the two types of spatiotemporal data generally correspond to an
object- versus a field-based spatial model. For either type of spatiotemporal data, change
may occur in discrete steps, e.g., changes in land deed boundaries, or in a continuous
process, e.g., changes in the position of a moving object such as a car. Another type of
spatiotemporal data is composite data whose components vary depending on
time or location. An example is the minimum combination of equipment and wards
required in a certain category of hospital (e.g., general, maternity, psychiatric), where
the relevant regulations determining the applicable base standards vary by locality and
time period.

A conceptual data modeling language for such applications should provide a
clear, simple, and consistent notation to capture alternative semantics for time,
space, and change processes. These include point- and interval-based time
semantics; object- and field-based spatial models; and instantaneous, discrete, and
continuous views of change processes. Multiple dimensions for time (e.g., valid,
transaction) and space should also be supported.

Although there has been considerable work in conceptual data models for
time and space separately, interest in providing an integrated spatiotemporal model
is much more recent. Spatiotemporal data models are surveyed in Abraham
(1999), including lower-level logical models (Claramunt, 1995; Langran, 1993;
Pequet, 1995). Those models that deal with the integration of spatial, temporal, and
thematic data at the conceptual level are the most relevant to this work and are
reviewed here.

Several conceptual frameworks have been designed to integrate spatial,
temporal, and thematic data based on Object-Oriented (OO) or Entity-Relationship (ER)
data models that include a high-level query language capable of specifying spatiotempo-
ral entity types. The data definition component of these query languages thus has some
potential for use in modeling spatiotemporal applications.

Becker (1996) and Faria (1998) propose OO models based on extensions
of ObjectStore and O2 respectively. Becker (1996) considers both object- and
field-based spatial models, defining a hierarchy of elementary spatial classes with
both geometric and parameterized thematic attributes. Temporal properties are
incorporated by adding instant and interval timestamp keywords to the query

Price, Tryfona & Jensen 145

language. In Faria (1998), spatial and temporal properties are added to an object class
definition by associating it with pre-defined temporal and spatial object classes. This
solution is not suitable for representing temporal or spatial variation at the attribute level,
as the timestamp and spatial locations are defined only at the object component level. In
addition, both Becker (1996) and Faria (1998) offer text-based query languages; the non-
graphical query languages of these models reduce their suitability as conceptual
modeling languages.

A few papers specifically address the need for a graphical modeling language
to support conceptual design of applications dealing with space and time. The
MADS model (Parent, 1999) extends an object-based model with pre-defined
hierarchies of spatial and temporal abstract data types and special complex data
types to describe all of an attribute’s properties, i.e. name, cardinality, domain, and
temporal or spatial dimensions. The use of a non-standard, hybrid ER/OO model
and the definition of new composite data structures for spatiotemporal properties,
rather than exploiting existing features of the ER or OO models, increases the
complexity of the model syntax. A thematic attribute value can be associated with
a spatial extent describing where it is valid; however, there is no provision for
attributes having a spatial domain. This reduces the flexibility of the model since any
data element associated directly with several different spatial extents must be
modeled as an association of spatial objects rather than as a single object with
several spatial attributes.

Tryfona (1999) proposes the SpatioTemporal ER model (STER) that adds
temporal and spatial icons to entities, attributes, and relationships to support
timestamped spatial objects and layers. Composite data whose components vary
over space and relationships associated with spatial extents are not considered.
Instead, spatial relationships are used to represent explicit geometric or topological
relationships between associated spatial objects, which could otherwise be derived
on demand. Therefore, temporal relationships describe model structure (i.e.,
timestamps), whereas spatial relationships describe model integrity (i.e., con-
straints).

None of the models described above provide explicit support for modeling a
group of thematic properties measured at the same times and locations, consider
interpolation, or support alternative time models (i.e., periodic versus aperiodic
recording of data values). An earlier spatiotemporal extension to the Unified Modeling
Language (UML) proposed in Price (1999) defines an attribute group within the OO
model and then defines constructs that provide support for modeling spatiotemporal
properties at the object, association, attribute, and attribute group levels. However,
neither the syntax nor the semantics of the symbols introduced in Price (1999) are
presented formally.

146 Extended Spatiotemporal UML

In this paper, we propose an extension of UML intended to address the goals
outlined earlier, i.e. to support a range of spatiotemporal models and data types
using a clear, simple, and consistent notation. Extending the OMG standard for OO
modeling was selected as the best approach given its high level of acceptance, tool
support, understandability, and extensibility. Although the applicability of the
proposed model is not necessarily limited to the Geographic Information System (GIS)
domain, the focus is primarily on GIS concerns and application examples in this paper.
We introduce a small base set of modeling constructs for spatiotemporal data that can
be combined and applied to different levels of the object-oriented model in a consistent
manner, guided by the same simple principles. The result is the Extended Spatiotemporal
UML. A formal functional specification of the semantic modeling constructs and symbolic
combinations is given.

The rest of the paper is organized as follows. The next section illustrates the
problems with using UML to model spatiotemporal data and considers possible
solutions. Then we describe the syntax and semantics of the fundamental new
constructs introduced—the spatial, temporal, and thematic symbols—for the
solution (i.e. UML extension) proposed in this paper. This is followed by a section
that discusses three other symbols: the attribute group symbol, the existence-
dependent symbol, and the specification box (used to specify the details of the
spatiotemporal semantics). The section "Using Extended Spatiotemporal UML"
shows how the previous example presented would be modeled using the proposed
UML extension. Finally, conclusions and future directions are pesented.

USING UML FOR SPATIOTEMPORAL DATA
In this section, we evaluate the core constructs and extension mechanisms

defined in UML (Booch, 1999; Rumbaugh, 1999; OMG 1999) in terms of their
suitability for modeling spatiotemporal data and defining a UML extension to
facilitate such modeling respectively. The UML usage and notation used is based
on Rumbaugh (1999), except that we use informal textual descriptions for complex
attribute domains and constraints for the sake of readability. We use Backus-Naur
Form (BNF) for specific explanations of syntax or terminology.The next section
uses an application example to demonstrate some of the problems associated with
modeling spatiotemporal data using only the core model of UML. We then evaluate
alternative approaches to extending a conceptual modeling language and evaluate
UML’s extension mechanisms.

Using UML: An Example
The following regional health application will be used to illustrate the use of

UML to model spatiotemporal data. Assume an application measuring health
statistics of different provinces, in terms of average lifespan, as related to the

Price, Tryfona & Jensen 147

location (i.e. a point in 2D space), number of beds, accessibility (i.e. a half-hour travel
zone around the hospital), and surrounding population densities of a province’s
hospitals. A hospital is classified by category, where a given category is required to have
a minimum number of beds in specific kinds of wards. However, category definitions
may differ between regions due to local regulations.

For properties dependent on time and/or location, we want to record
information about when (using time intervals unless otherwise specified) and/or
where a given value is valid (i.e. valid time) or current (i.e. transaction time). For
example, a province’s population densities and average lifespans can vary and are
recorded yearly at the same time instants (values are averaged between yearly
measurements) and for the same regions. The number of beds, the half-hour travel
zone, a hospital’s category, and the regional definition of hospital categories may
change over time as well. We want to record existence and transaction time for
hospitals, valid time and transaction time for a hospital’s category, and valid time
for all of the other time dependent properties. The time unit for the half-hour travel
zone is not yet specified, demonstrating incremental design specification. Time
elements are used to model hospital existence time since hospitals may sometimes
be closed and later re-opened based on changes in local population density. Note
that the number of beds, half-hour travel zone, and hospital category are only
defined when the hospital is open.

Representation of spatiotemporal concepts using the core constructs of UML
is not straightforward, as is illustrated using the regional health example in Figure 1.
Figure 1 uses the following BNF definitions:

spatial-extent := { point | line | region | volume }n

timestamp := { instant | interval | element }
Attributes with spatial and/or temporal properties (e.g. the half-hour travel

zone or number of hospital beds) can be modeled (e.g. halfHourZone or numBeds
attributes, respectively) using composite attribute domains consisting of a set of
tuples, where each tuple consists of a thematic value, spatial extent, and/or
timestamp(s). Alternatively, an attribute with spatial and/or temporal properties
(e.g. population density or average lifespan) could be promoted to a separate but
associated class with the same information added to the new class. Although not
required by the semantics of the example application, we must also create an
artificial identifier attribute for this class because its instances must be uniquely
identified (see Rumbaugh, 1999, pp. 304, 307). Of more concern, this approach
will lead to redundancy whenever the same attribute value is repeated for different
object instances, times, and/or spatial extents. This is especially significant for
spatial data because of their size.

A more correct approach, in general, would be to promote the association to
an association class (e.g., Has) with spatial data in the associated class (e.g.,

148 Extended Spatiotemporal UML

Figure 1: Regional Health Application in UML

Interpolatio
n:
space--none

 valid-time: timestamp
 {instant, regular (yearly)}

 populationDensity: int

 averageLifespan: int

 Has

 operations

 name: string

 hospital-existence-time: timestamp {element}
 hospital-transaction-time: timestamp
{interval}

 numBeds: {timestamp in Hospital existence-time}
 set of (i: int, t: valid-timestamp {interval,
irregular})

 location: spatial-extent {0D point in 2D
space}

 Hospital

 operations

I
* 1

Hospital-category

categoryName:
string

operations

Ward-category

category-name: string
specification: string
minimumBedsRequired:

operations

 name: string
 Province

 operations

 name: string
 valid-time: timestamp
{interval}
 {within Hospital existence-time}
 transaction-time: timestamp

{interval}

 Is-of

 operations

 valid-time: timestamp {interval}
 limits: spatial-extent
 {2D region in 2D space}

 Contains

 operations

 identifier: string
 location: spatial-extent

{2D field in 2D

 Measurement-Region

 operations

*

*

*

1

*

1

Measurement-Region) and thematic and/or timestamp data (e.g.,
populationDensity, averageLifespan, and valid-time) in the association class.
This still does not solve the problem of the artificial identifier or the extra complexity
introduced for adding classes. However, this approach is preferred when (1) the
same spatial extent is associated with different object instances or timestamps or (2)
several attributes are associated with the same timestamps or spatial extents.
Classes and associations with temporal and/or spatial properties (e.g. Hospital and
hospital Is-of category respectively) can be treated similarly by adding timestamp
and/or spatial attributes, after promoting the association to an association class in
the latter case.

Price, Tryfona & Jensen 149

Constraints are used to indicate the time units for timestamps, the time model,
the dimensions of spatial extents, and the existence-dependencies described for the
application example. Notes are used to show interpolation semantics. Association,
rather than generalization, is used to represent hospital category since its definition
varies regionally and does not affect the properties defined for the hospital class.

Figure 1 shows that a new association class must be created for each
association with spatial or temporal properties. As can be seen, this leads to the
creation of a host of artificial constructs that significantly complicate the schema
diagram. Furthermore, there is no single, easily visible notation to represent
spatiotemporal properties. This violates the requirement that the notation be simple,
clear, and consistent. A better approach is to extend the fundamental characteristics
of the existing UML elements to meet the spatiotemporal requirements. Next, we
consider several alternative methods of extending UML and discuss the advantages
and disadvantages of each approach.

Alternative Approaches to Extending UML
Gregersen (1999) discusses three different ways of extending the ER model

to incorporate semantics: (1) implicit extension by redefining the semantics of
existing notation, (2) explicit extension by representing the additional semantics
using existing constructs, i.e., essentially defining standard patterns in the style of
Fowler (1997b), or (3) explicit extension by adding additional constructs to the
modeling language. Another explicit approach would be to define new data types
(or abstract data types) incorporating the semantics that could then be used to
describe attribute domains as needed. While the implicit approach may require less
initial training for users than the explicit approaches, it results in problems of
incompatibility with the original model (i.e., pre-existing schemas now have different
semantics) and lack of flexibility (i.e. since the new extended model is no longer
suitable for applications not requiring the additional semantic support).

With respect to the explicit approaches, we can see that the pattern-based
approach, illustrated in Figure 1, has the disadvantage of producing awkward and
overloaded schemas, whereas the other two options add to the constructs or data
types that must be learned by the user. Essentially, the additional complexity
introduced by the new semantics is evident at the level of the schema for the pattern
approach and at the level of the modeling language for the other two approaches.
This essentially involves a trade-off between ease of initial use versus regular use.

It is our contention that (1) the priority should be for facilitating regular use and
that (2) new constructs and/or data types can be designed to minimize learning time
by taking advantage of orthogonality. Furthermore, conversion of new constructs
that have equivalents in the original model can be automated for implementation or
reference purposes. In the OO context, if the additional semantics impact the object

150 Extended Spatiotemporal UML

or association levels, then the definition of new abstract data types for attribute
domains is not sufficient: some new constructs will be required. As objects and
associations can also have spatiotemporal semantics, we adopt the approach of
defining new constructs. Next, we examine the potential use of existing UML
extension mechanisms to define such constructs.

Using UML Extension Mechanisms
Stereotypes, tagged values, and constraints are advanced features of UML

intended to support extensions to the UML meta-model; therefore, they provide a
potential basis for defining a spatiotemporal extension. One problem with these
mechanisms, as with some other aspects of UML such as aggregation and
composition, is that they are inconsistently described in the main sources for UML
(Booch, 1999; Rumbaugh, 1999; OMG, 1999). A detailed discussion of some
inconsistencies in UML is described in Henderson (1999).

Stereotypes are used to indicate a variation in usage or meaning for an existing
UML model element. Tagged values and constraints can be attached to the
stereotype to define its additional properties and semantics respectively. A set of
standard stereotypes has been defined for UML (Booch, 1999, pp. 442), but none
is defined as applying both to attributes and composite model elements having
identity (i.e., classes and associations versus composite attribute domains) or used
for both spatial and temporal properties. Fowler (1997a) suggests using a history
stereotype to model historical associations between classes by adding a temporal
subtype to one of the classes. But this seems to imply that a new stereotype should
be added for each different level of granularity and does not account for spatial or
spatiotemporal attribute variation.

Even if we introduce new stereotypes for spatiotemporal semantics, a strict
adherence to the definition of UML extension mechanisms can be problematic.
According to Rumbaugh (1999, p. 450), a model element can have at most one
stereotype. Instead of defining a model element with multiple stereotypes, a new
composite stereotype should be defined using generalization and multiple inherit-
ance, e.g. one for each meaningful combination of spatial, temporal, and thematic
data semantics. However, this leads to a proliferation of modeling constructs and
a less intuitive representation. Defining a small set of basic constructs that can be
combined in a simple and semantically meaningful manner is a much more elegant
way to add expressive power to a modeling language without sacrificing under-
standability or simplicity. Therefore, there are strong arguments for allowing a
spatiotemporal extension to violate the strict definition of UML stereotypes by
allowing model elements to have more than one stereotype.

Furthermore, Rumbaugh (1999) states that “stereotypes may extend the
semantics but not the structure of pre-existing metamodel classes” (p. 449), with

Price, Tryfona & Jensen 151

Figure 2: Extended Spatiotemporal UML Symbols

 S

 Spatial

 G

 Group Temporal

 T

 Thematic

 Th

 Existence-Dependent

 ED

the exception that tagged values can be used to change the structure of a model
element (but not its instantiations). Thus, they do not allow specification of types or
domains (all tagged values are text strings) and are not intended for “serious
semantic extensions to the modeling language itself” (Rumbaugh, 1999, p. 469).
However, spatiotemporal semantics require a change in the structure of model
elements to allow relevant time periods and/or spatial extents to be associated with
the model element’s instances or values. Based on this discussion, it is clear that
constructs added to extend UML with spatiotemporal semantics will necessarily go
beyond the extension mechanisms defined for UML.

EXTENDED SPATIOTEMPORAL UML
The proposed extension to UML is based on the addition of five new symbols,

illustrated in Figure 2, and a specification box describing the detailed semantics of the
spatiotemporal data represented using the five symbols. The basic approach is to extend
UML by adding a minimal set of constructs for spatial, temporal, and thematic data,
represented respectively by spatial, temporal, and thematic symbols. These
constructs can then be applied at different levels of the UML class diagram and in
different combinations to add spatiotemporal semantics to a UML model element. In
addition, the group symbol is used to group attributes with common spatiotemporal
properties or inter-attribute constraints and the existence-dependent symbol is used
to describe attributes and associations dependent on object existence.

As discussed previously, although these new symbols can be roughly described
as stereotypes; they do not adhere strictly to the UML definition. For improved
readability, we use the alternative graphical notation for stereotypes described in
Rumbaugh (1999, pp. 451). These symbols can be annotated with a unique label used
to reference the associated specification box. The first four symbols can optionally be
used without the abbreviations shown in the figure (i.e., S, T, Th, and G respectively).
The specific alphanumeric domain can be optionally indicated, e.g., Th: int.

The group symbol, existence-dependent symbol, and specification box are
discussed in the section, "Specificaton Box, Existence Time and Groups." The

152 Extended Spatiotemporal UML

spatial, temporal, and thematic symbols are described in this section. A general
overview of the meaning and use of these three symbols is given. Then we explain
the use and associated semantics of these symbols at the attribute (and attribute
group), object class, and association levels respectively.

Spatial, Temporal, and Thematic Constructs
These constructs can be used to model spatial extents, object existence or

transaction time, and the three different types of spatiotemporal data previously
discussed (i.e. temporal changes in spatial extents; changes in the values of
thematic data across time or space; and composite data whose components
vary depending on time or location). To understand the use and semantics of the
spatial, temporal, and thematic constructs, we first discuss the interpretation of
each individual symbol separately.

The spatial symbol represents a spatial extent, which consists of an arbitrary
set of points, lines, regions, or volumes. The spatial extent may be associated with
thematic or composite data, or may be used to define an attribute domain. The
temporal symbol represents a temporal extent, or timestamp, which may be
associated with thematic, spatial, or composite data. Timestamps may represent
existence time for objects, valid time for associations and attributes, and transaction
time for objects, associations, and attributes. The thematic symbol represents thematic
data.

The thematic symbol can only be used at the attribute level and only in
conjunction with one of the other two symbols to describe an attribute with
temporal or spatial properties. A thematic attribute domain with no spatial or
temporal properties uses standard UML notation, i.e. <attribute-name>:
<domain>. When there are such properties, either this notation can be used or the
specific thematic domain can be indicated inside the thematic symbol. Figure 3
illustrates the four possible cases for a thematic attribute: attributes with a thematic
domain and (a) no spatial or temporal properties, (b) temporal properties, (c)
spatial properties, or (d) spatiotemporal properties. Adjectives are used to
describe the attribute domain (e.g., thematic attribute) and adverbs with the word
dependent to describe additional attribute properties for composite attribute
domains (e.g., temporally dependent thematic attribute). Therefore, the four
possible cases for thematic attributes are called (a) thematic, (b) temporally
dependent thematic, (c) spatially dependent thematic, or (d) spatiotemporally
dependent thematic attributes respectively.

The semantics of Extended Spatiotemporal UML depend on three factors: (a)
the symbol used, (b) the model element described by the symbol (i.e., object,
association, or attribute), and (c) whether the symbol is combined with other symbols.
The general rules for combining symbols can be summarized as follows:

Price, Tryfona & Jensen 153

• Nesting one symbol inside another represents mathematically a function from
the domain represented by the inner symbol to the domain represented by the
outer symbol. Therefore, different orders of nesting symbols correspond to
different functional expressions and represent different perspectives of the data.

For example, Figure 3(b) represents a function from the time to the integer
domain for a given object or association instance. If we reverse the order of the
symbol nesting, this would represent the inverse function from the integer to the
time domain. However, from the conceptual design and schema perspective,
both represent the same semantic modeling category and would result in the same
conceptual and logical schema, i.e., a temporally dependent, thematic attribute.

Rather than arbitrarily restricting the representation of a semantic modeling
category to one order of nesting, we prefer to allow the users to select the order
of nesting that best matches their perspective of the application data. Although
not explored in the current paper, the different orders of nesting could be
exploited for a graphical query language or to indicate preferred clustering
patterns to the database management system in generating the physical schema.

Note also that in Figure 3(b), only one integer value is associated with each
timestamp; however, several different timestamps may be associated with the
same integer value. In Figure 3(d), several integer values will be associated with
each timestamp, one for each spatial location.

• Placing one symbol next to another symbol represents mathematically two
separate functions, one for each symbol. The order in which the two symbols are
written is not significant.

We now give the rule for which symbolic combinations are legal at each model
level, the semantic modeling constructs defined at each level, and a mapping
between the two. For a given semantic modeling construct, the textual and
mathematical definitions are given for each possible symbol nesting that represents
that construct.

Note that any reference to a timestamp, timestamps, a time point, or time
validity in the definitions for a given symbol nesting could be for any time dimension,

Figure 3: Thematic Attribute Examples

154 Extended Spatiotemporal UML

i.e., transaction and/or either valid (for attributes and associations) or existence (for
objects) time dimensions. The first symbol nesting given for each semantic modeling
construct is used in the examples.

We first summarize the primitives used in this section to denote various time,
space, and model elements.
<T> ::= domain of time instants
<2T> ::= arbitrary set of time instants, i.e., a timestamp or set of timestamps
<S> ::= domain of points in space
<2S> ::= arbitrary set of points in space, i.e., a spatial extent or set of spatial

extents
<oid> ::= domain of object-identifiers
<aid> ::= domain of association-instance identifiers, essentially { <oid> }n

<id> ::= domain of object and association identifiers, essentially { <oid> |
<aid> }

<D> ::= thematic, i.e. alphanumeric, domain (e.g., integer, string)
<d> ::= thematic attribute symbol
<t> ::= temporal symbol
<s> ::= spatial symbol
<s&t> ::= any nested combination of a spatial and a temporal symbol
<s&d> ::= any nested combination of a spatial and a thematic symbol
<t&d> ::= any nested combination of a temporal and a thematic symbol
<s&t&d>::= any nested combination of a spatial, a temporal, and a thematic symbol
<ED> ::= existence-dependent symbol

The Attribute (and Attribute Group) Level
At the attribute level, we can model temporal changes in spatial extents,

where the spatial extent represents a property of an object (i.e., spatial attribute),
and changes in the value of thematic data across time and/or space (i.e.,
spatially and/or temporally dependent thematic attributes).

Legal combinations of symbols at the attribute level are any nested combina-
tion of a spatial symbol, a temporal symbol, and/or a thematic symbol. The only
exception is that the temporal symbol cannot be used alone. An attribute with a
temporal domain is treated as thematic data since temporal data types are pre-
defined for popular standard query languages such as SQL. The attribute domain
can optionally be followed by an existence-dependent symbol (discussed later).
The rule for notation at this level can be defined using BNF notation and the
primitives defined previously: attribName: [<D> | <s&d> | <t&d> | <s&t&d>
| <s> | <s&t>] [<ED>]

Six different attribute domains are possible, corresponding to the semantic
categories of attributes (i.e., modeling constructs). Reading the domain symbols left

Price, Tryfona & Jensen 155

to right, we have: thematic attributes; spatially, temporally, and spatiotempo-
rally dependent thematic attributes; spatial attributes; and temporally depen-
dent spatial attributes. Except for thematic attributes, these domains represent
extensions for spatiotemporal data modeling.

For each of the semantic categories, a general textual description, symbolic
representation(s), mathematical definition(s), and textual definition(s) are given
below. Note that each one of the definitions below applies to the identified object
or association instance: therefore, we do not state this explicitly in the definitions.
• Thematic Attribute: This is an attribute with thematic values.

<D> f: <id> Č <D>
Returns the thematic attribute value.

• Spatially Dependent Thematic Attribute: This is a set of thematic attribute
values, each associated with a spatial extent representing the location where that
attribute value is valid. This implies that the attribute values may change over
space and their changed values may be retained.
 f: <id> Č (<S> Č <D>)
Returns a set of spatial points, each with its associated thematic attribute value
(valid for that spatial point).
 f: <id> Č (<D>Č <2S>)

Returns a set of thematic attribute values, each with its associated spatial extents
(where that thematic attribute value is valid).

• Temporally Dependent Thematic Attribute: This is a set of thematic attribute
values, each associated with one or more timestamps, representing the attribute
value’s valid and/or transaction time. This implies that the attribute values may
change over time and their changed values may be retained.
 f: <id> Č (<T> Č <D>)

Returns a set of time points, each with its associated thematic attribute value (i.e.
valid for that time point).
 f: <id> Č (<D> Č <2T>)

Returns a set of thematic attribute values, each with its associated timestamps
(i.e. when that thematic attribute value is valid).

• Spatiotemporally Dependent Thematic Attribute: This is a combination of
spatially and temporally dependent thematic attributes as defined above, i.e. a set
of thematic attribute values, each associated with a spatial extent and one or more
timestamps.

156 Extended Spatiotemporal UML

 f: <id> Č (<T> Č (<S> Č <D>))
Returns a set of time points, each with its associated set of spatial points, and,
for each spatial point, its associated thematic attribute value (i.e., valid for that
time and spatial point).

f: <id> Č (<D> Č (<T> Č <2S>))

Returns a set of thematic attribute values, each with its associated set of time
points, and, for each time point, its associated spatial extents (i.e., where that
thematic value is valid for that time point).
 f: <id> Č (<S> Č (<D> Č <2T>))
Returns a set of spatial points, each with its associated set of thematic attribute
values, and, for each thematic attribute value, its associated timestamps (i.e.,
when that thematic attribute value is valid for that spatial point).
 f: <id> Č (<S> Č (<T> Č <D>))
Returns a set of spatial points, each with its associated set of timepoints, and, for
each time point, its associated thematic attribute value (i.e., valid for that spatial
and time point).
 f: <id> Č (<T> Č (<D> Č <2S>))

Returns a set of time points, each with its associated a set of thematic attribute
values, and, for each thematic attribute value, its associated spatial extents (i.e.,
where that thematic attribute value is valid for that time point).
 f: <id> Č (<D> Č (<S> Č <2T>))
Returns a set of thematic attribute values, each with its associated set of spatial
points, and, for each spatial point, its associated timestamps (i.e., when that
thematic attribute value is valid for that spatial point).

• Spatial Attribute: This is an attribute with a spatial domain, i.e., the attribute
value is a spatial extent.
 f: <id> Č <2S>
Returns the spatial attribute value.

• Temporally Dependent Spatial Attribute: A spatial attribute is associated with
one or more timestamps, representing the spatial extent’s valid and/or transac-
tion time.

 f: <id> Č (<T> Č <2S>)

Price, Tryfona & Jensen 157

Returns a set of time points, each with its associated spatial attribute value (i.e.,
spatial extent).
 f: <id> Č (<S>Č <2T>)
Returns a set of spatial points, each with its associated timestamps (i.e. when the
spatial attribute value, i.e., spatial extent, intersects that spatial point).

The use of these symbols at the attribute level is illustrated in Figure 4. The
difference between (a) thematic attributes, (b) temporally dependent thematic
attributes, (c) spatiotemporally dependent thematic attributes, (d) spatial attributes,
and (e) temporally dependent spatial attributes is illustrated by (a) name (for
Hospital and Province), (b) numBeds, (c) populationDensity, (d) location, and
(e) halfHourZone respectively.

A thematic attribute domain is indicated as a string after the attribute or—if that
attribute also has temporal or spatial properties—by the use of a thematic symbol.
If no domain is explicitly specified for an attribute, then the use of the spatial symbol
indicates that the attribute has a spatial domain. Thus, the Hospital location and
halfHourZone attributes represent spatial data. The nested temporal symbol used
for halfHourZone indicates that the spatial extent associated with this attribute may
change over time and thus should be timestamped. Therefore, an attribute marked
by a spatiotemporal symbol (and no thematic domain) represents a spatial extent
that changes over time. In this case, as transport networks change, the geometry of
the half-hour travel zone must be updated.

In contrast, an attribute that has a thematic domain and a spatial and/or
temporal symbol represents a spatially and/or temporally dependent thematic
attribute. This is indicated graphically by using the thematic symbol; thus this symbol

 name: string

 populationDensity:

 Province

 S
 T
Th: int

 operations

In
1*

 name: string

 numBeds:

 location:
 halfHourZone:

 T
Th: int

 S
 T

 Hospital

 operations

Figure 4: Using Extended Spatiotemporal UML at the Attribute Level

158 Extended Spatiotemporal UML

is used to differentiate two different types of spatiotemporal data: temporal
changes in spatial extents and changes in the value of thematic data across
time and space. Therefore, the fact that numBeds has an integer domain associated
with a temporal symbol indicates that the integer value of numBeds may change
over time and should be timestamped. Analogously, the integer value of
populationDensity may change over time or space and thus each value is
associated with a timestamp and spatial extent.

The Object Class Level
At the object class level, we can model temporal changes in spatial extents,

where the spatial extent is associated with an object instance. We can also model
the time an object exists in the real world (i.e., existence time) or is part of the current
database state (i.e., transaction time).

An object class can be marked by a temporal symbol, a spatial symbol, or any
nested combination of these. In addition, this is the only level where the symbols can
be paired; i.e., a temporal symbol can be paired with either a spatial symbol or a
nested combination of the two symbols. The separate temporal symbol represents
the existence or transaction time of the object. The spatial symbol represents the
spatial extent associated with that object. If the spatial symbol is combined with a
nested temporal symbol, then the spatial extent is timestamped to show the valid or
transaction time of the spatial extent. Since the object can exist or be current even
when not actually associated with a spatial extent, separate timestamps are required
for the object instance and for the object instance’s spatial extent. The rule for
object level notation can be given in BNF as follows:

 className [<s> | <s&t>] [<t>]
Corresponding to the five possible instantiations of this rule, <s>; <s&t>; <t>;

<s><t>; and <s&t><t>, there are five different categories of object classes as
defined below.
• Spatial Object (Class): An object is associated with a spatial extent. This is

equivalent to an object having a single spatial attribute except that there is no
separate identifier for the spatial extent.
 f: <oid> Č <2S>
Returns the spatial extent of the identified object.

• Temporally dependent Spatial Object (Class): The spatial extent associated
with a spatial object is also associated with one or more timestamps, representing
the spatial extent’s valid and/or transaction time.

 f: <oid> Č (<T> Č <2S>)

Price, Tryfona & Jensen 159

Returns a set of timepoints, each associated with the spatial extent of the
identified object at that timepoint.
 f: <oid> Č (<S>Č <2T>)
Returns a set of spatial points, each with its associated timestamps (i.e., when the
object’s spatial extent intersects that spatial point), for the identified object.

• Temporal Object (Class): An object is associated with one or more timestamps,
representing the object’s existence and/or transaction time.
 f: <oid> Č <2T>
Returns the timestamp of the identified object.

• Spatiotemporal Object (Class): This is a combination of a spatial and temporal
object as defined above, i.e., each object instance is associated with a spatial
extent and one or more timestamps representing the object’s existence and/or
transaction time.

f: <oid> Č <2T> and f: <oid>Č <2S>
Returns the timestamp and the spatial extent of the identified object.

• Temporally Dependent Spatiotemporal Object (Class): This is a combination
of a temporally dependent spatial object and a temporal object as defined above,
i.e., an object is associated with a spatial extent, one or more timestamps
representing the spatial extent’s valid and/or transaction time, and one or more
timestamps representing the object’s existence and/or transaction time.

f: <oid>Č <2T> and f: <oid> Č (<T>Č <2S>)
Returns the timestamp of the identified object and a set of timepoints, each with
its associated spatial extent (i.e., valid at that timepoint), for the identified object.

f: <oid> Č <2T> and f: <oid>Č (<S>Č <2T>)
Returns the timestamp of the identified object and a set of spatial points, each with
its associated timestamps (i.e., when the object’s spatial extent intersects that
spatial point), for the identified object.

The use of symbols at the object class level is illustrated in Figure 5. In Figure
5(a), the temporal symbol at the Hospital object level represents a temporal object
class with existence and transaction time. In Figure 5(b), we give an example of a
temporally dependent spatial object. This example assumes that there is no need to
represent hospital location separately from the half-hour travel zone. Instead, a
hospital object is treated as a spatial object with a single associated spatial extent,
showing the half-hour travel zone around that hospital. The temporal symbol
indicates that the spatial extent should be timestamped, since the half-hour travel
zone can change over time. Finally, Figure 5(c) combines (a) and (b), illustrating a

160 Extended Spatiotemporal UML

Figure 5: Using Extended Spatiotemporal UML at the Object Class
Level

 name: string

 numBeds:

 Hospital

 operations

 S
 T

 T
Th: int

 name: string

 numBeds:

 location:

halfHourZone:

 Hospital

 operations

 T
Th: int

 S
 T

 name: string

 numBeds:

 Hospital

 operations

 S
 T

 T
Th: int

(a (c(b

temporally dependent spatiotemporal object. The object is spatiotemporal
because it has a timestamp and a spatial extent; and it is temporally dependent
because the spatial extent also has a timestamp.

 The Association Level
At the association level, we can model temporal changes in spatial extents,

where the spatial extent is associated with a relationship between object instances
(i.e., spatiotemporal association), and composite data whose components vary
depending on time or location (i.e., spatiotemporal aggregation or composition).
The following discussion applies to any type of association, including aggregation
and composition.

At the association level, any nested combination of a spatial and/or a temporal
symbol represents a legal combination describing spatiotemporal properties of the
association. Except for the omission of the thematic symbol, the association level
is similar to the attribute level. The association spatiotemporal properties can
optionally be followed by an existence-dependent symbol (discussed later). The
rule for the association level notation can be given in BNF as follows:
assoc-line [<s> | <t> | <s&t>] [<ED>]

Reading the BNF rule from left to right, three different categories of
associations are possible, as defined below.

•Spatially Dependent Association: An association instance is associated with
a spatial extent representing the location where the association instance is valid.
This implies that the association instances may change over space and their
changed instances may be retained.

 f: <aid> Č <2S >
Returns the spatial extent of the identified association.

Price, Tryfona & Jensen 161

• Temporally Dependent Association: An association instance is associated
with one or more timestamps, representing the association’s valid and/or
transaction time. This implies that association instances may change over time
and the changed instances may be retained.
 f: <aid> Č <2T >
Returns the timestamp of the identified association.

• Spatiotemporally dependent Association: This is a combination of spatially
and temporally dependent associations as defined above, i.e., an association is
associated with a spatial extent and one or more timestamps.

 f: <aid> Č (<T> Č <2S >)

Returns a set of time points, each with the associated spatial extent for the
identified association at that time point.
 f: <aid> Č (<S>Č <2T>)
Returns a set of spatial points, each with its associated timestamps (i.e., when the
association instance’s spatial extent intersects that spatial point), for the identified
association.

The use of these symbols at the association level is shown in Figure 6. Marking
the Is-of association with a temporal symbol signifies that the category of a hospital
may change over time, as local health needs change and wards are opened or
closed. Therefore, association instances should be timestamped.

A spatially dependent association is one where an association instance is
associated with a spatial extent to show where that instance is valid. For

Hospital-category

categoryName: string
description: string

operations

 name: string

 numBeds:

 location:

 halfHourZone:

 Hospital

 T
Th: int

 S
 T

Ward-category

categoryName: string
specification: string
minimumBedsRequired: int

operations

Is-

1*

Contai S
 T

*

*

Figure 6: Using Extended Spatiotemporal UML at the Association Level

Price, Tryfona & Jensen 163

Figure 7: Specification Box Syntax in Extended Spatiotemporal UML

 SPECIFICATION BOX <Identifier>:

 TimeDimen. ::= [existence | valid] [transaction]

 TimeInterpolation ::= discrete | step | min | max | avg | linear | spline | <user-defined>

 TimeModel ::= irregular | (regular {<frequency> [,<beginning>,<end>]})

 TimeUnit [(<TimeDimen.>)] ::= instant | interval | element

 SpaceInterpolation ::= <same as TimeInterpolation>

 SpaceModel ::= ‘(‘ <max object/field dim>, <max search space dim> ‘)’: object | field

 Group ::= independent | (dependent (formula)*)]

specification box was adopted instead of standard UML mechanisms such as
tagged values or constraints for the reasons discussed previously. The specification
box includes information on the time units and the time and space dimensions,
models, and interpolation. Users can specify regular (recorded at regular intervals)
or irregular time models and object- or field-based space models. Interpolation
functions can be specified to derive values between recorded spatial locations or
timestamps for spatially and/or temporally dependent thematic attributes. The time
dimensions and units (i.e., instant, interval, element) used are defined in Jensen
(1998). Specification boxes can be inherited from parent classes as with any other
class property. The specification box syntax is illustrated in Figure 7.

Time dimensions include existence time (for objects), valid time (for attributes
and associations), and transaction time (for objects, attributes, or associations), as
defined in Jensen (1998). However, object existence time is more precisely defined
as the time during which existence-dependent attributes and associations can be
defined (i.e., have legal values) for that object. In other words, existence-dependent
attributes and associations are those that are defined only when the related object(s)
exist. This implies that attributes and associations that are not existence-dependent
(e.g., an employee’s social-security number) may be defined even when the related
object(s) no longer exist. Other attributes, e.g. work-phone number, are defined
only while the related object(s) exist (e.g., the employee works at the company) and
are therefore existence-dependent.

Note that existence time is not necessarily equivalent to biological lifespan.
The exact meaning will be dependent on the application; therefore, individual
applications define which attributes and associations are existence-dependent.
Object identifiers are never existence-dependent, as they can be used to refer to
historical objects. Any other attribute or association can be defined as being
existence-dependent.

164 Extended Spatiotemporal UML

If existence time is associated with a given object, the existence-dependent
attributes and associations for that object class must be explicitly marked as such
by adding the superscript ED to the attribute or association name. Conversely,
existence-dependent attributes and associations can only be defined for objects
having existence time specified. In the case of an existence-dependent association,
existence time must be defined for at least one of the participating objects.

If an existence-dependent attribute is temporally dependent, then every valid-
time timestamp for the attribute’s instance data must be included within the existence
time of the corresponding object instance. If an existence-dependent association is
temporally dependent, then every valid-time timestamp for the association’s
instance data must be included in the intersection of the existence times for those
participating object instances that have existence time defined. An existence-
dependent attribute is undefined outside the existence time of the corresponding
object instance. Similarly, an existence-dependent association is undefined outside
the intersection of the existence times for those participating object instances that
have existence time defined.

Note that the time model and interpolation specification apply only to valid
time, whereas the time unit specification is used both for valid or existence time and
transaction time. Therefore, the dimension must be specified for time unit whenever
a model element is associated with both valid or existence time and transaction time.
In addition, time interpolation is normally used for temporally dependent thematic
attributes. Time interpolation of spatial attributes (i.e., spatial extents) must be
discrete (i.e., no interpolation) or user defined.

Space dimensions include the dimensions of the spatial extent(s) being
specified, followed by the dimensions of the underlying search space. The object-
based spatial model is used for a spatial attribute, i.e., the attribute instance for a
single object instance consists of a single spatial extent. The field-based spatial
model is used for a spatially dependent, thematic attribute; where a single object
instance has a set of thematic values, each associated with a different spatial extent.
Space interpolation applies only to spatially dependent thematic attributes using the
field-based spatial model.

The specification box can also be used to specify spatiotemporal constraints,
including constraints within an attribute group. The group symbol is used to group
attributes sharing the same timestamps or spatial extents, that then only need to be
specified once for the group. Thus, the group symbol graphically illustrates
associated sets of attributes and avoids the possibility of redundantly specifying the
same spatial extents and timestamps. Note that a group’s attributes never share
thematic values, even if the thematic symbol is used in the group specification. If the
group’s attributes have different thematic domains, then these can be indicated next
to each attribute using standard UML text notation.

Price, Tryfona & Jensen 165

Following UML convention, another compartment is added to the object
class to accommodate the specification boxes for that class, i.e., the specification
compartment. The specification compartment can be used to specify spatiotem-
poral semantics for the object, the attributes of the object class, and any associa-
tions in which the object class participates. Alternatively, a specification compart-
ment can be added to an association class to specify spatiotemporal semantics for
that association and its attributes. A detailed discussion of the specification
compartment and box can be found in Price (1999).

USING EXTENDED SPATIOTEMPORAL UML: THE
REGIONAL HEALTH CARE EXAMPLE

Figure 8 shows the full regional health application described earlier as it would
be represented using the proposed extension and illustrates the use of the
specification box, group symbol, and existence-dependent symbol.

For example, Hospital location is specified as a single point in 2D space.
Hospital halfHourZone and Contains are specified as a region in 2D space. In
contrast, the Province populationDensity and averageLifespan group is asso-
ciated with a 2D field in 2D space. This means that, for a single object instance, the
two attributes in the group are associated with a set of regions and have a separate
attribute value for each region for a given point in time. Since these two attributes
share common timestamps and spatial extents, they are grouped. Since both
attributes are integers, we can specify the thematic domain in the group symbol. If
the attributes had different thematic domains, then we would specify them for each
attribute rather than for the group.

The group is then associated with a single symbol and specification box. Here
we specify that any attribute in the group uses average interpolation in time and no
interpolation in space, has a valid time dimension using instant as the time unit, and
is measured yearly (i.e. a new set of values is recorded for the attribute each year).
This means that the population density and average lifespan between recorded time
instants is assumed to be the average of the values at the two nearest time instants
and undefined outside of recorded spatial regions. No inter-attribute constraints are
defined for the group, as shown by the keyword independent.

The temporal symbol at the Hospital object level is used to indicate existence
time and transaction time. Existence time is used to model the periods when the
hospital is open, i.e., when the existence-dependent attributes numBeds and
halfHourZone and the existence-dependent association Is-of are defined. Since
these model elements are temporally dependent, the valid timestamps of all their
instances must be included within the Hospital existence time. Attribute numBeds
is specified as irregular because this attribute is not recorded periodically: whenever
it changes the new value is recorded.

166 Extended Spatiotemporal UML

I

* 1

 Province

 operations

 specifications

Specification Box Province Group:
SpaceModel := (2,2): field
SpaceInterpolation := discrete
TimeDimen := valid
TimeUnit := instant
TimeModel := regular(yearly)
TimeInterpolation := average
Group := independent

 name: string

 populationDensity:
 averageLifespan:

 S
 T
Th: int

G

Hospital-category

categoryName: string
description: string

operations

 Specification Box Is-of:
TimeDimen := valid, transaction
TimeUnit[valid] := interval
TimeUnit[transaction] := interval

Ward-category

categoryName: string
specification: string
minimumBedsRequired: int

operations

 Specification Box Contains:
SpaceModel := (2,2): object
TimeDimen := valid
TimeUnit := interval

Is-of *
1

Contai

 S
 T

**

 Hospital

 operations

 name: string

 numBedsED:

 location:

 halfHourZoneED:

 T
Th: int

 S
 T

 specifications

Specification Box Hospital location:
SpaceModel := (0,2): object

Specification Box Hospital numBeds:
TimeDimen := valid
TimeUnit := interval
TimeModel := irregular

Specification Box Hospital halfHourZone :
SpaceModel := (2,2): object
TimeDimen := valid

Specification Box Hospital:
TimeDimen := existence, valid
TimeUnit[existence] := element
TimeUnit[transaction] := interval

Figure 8: Regional Health Application in Extended Spatiotemporal UML

Price, Tryfona & Jensen 167

The specification box for an association (e.g., Is-of) can be placed in the
specification compartment of either of its participating object classes (e.g., Hospi-
tal or Hospital-category). Note that since Hospital-category is not temporal and
therefore does not have existence time defined, the only constraint on the valid-time
timestamps of the Is-of association comes from the Hospital class existence time.

DISCUSSION AND CONCLUSION
Comparing the schemas of the regional health application from Figure 8 and

Figure 1, it is clear that the schema that uses Extended Spatiotemporal UML is much
simpler than the corresponding UML schema. The use of UML in Figure 1 results
in the creation of a host of artificial constructs to represent spatiotemporal
semantics, obscuring the schema design. We can see that far fewer object classes
are required in Figure 8 to describe the same application example. Modeling
representative excerpts of actual spatiotemporal applications showed a similar
pattern, e.g., 50% and 30% fewer object classes were required using the proposed
extension to model a cadastral application (Tryfona, 1999) and medical multimedia
application (Dionisio, 1998), respectively. In particular, fewer object classes were
required to model spatiotemporal associations or attribute groups. Fewer attributes
were required, since graphical symbols and specification boxes were used instead
of extra attributes (e.g. for time dimensions or identification) to provide a compact,
distinct, and consistent representation of spatiotemporal properties.

By incorporating spatiotemporal semantics in the modeling language itself,
Extended Spatiotemporal UML reduces the complexity of the resulting schemas.
The level of detail is reduced without sacrificing understandability. This allows the
application developer to concentrate on the characteristics of the specific applica-
tion domain of interest. The modular specification of spatiotemporal properties also
facilitates schema reuse and extension.

For example, if we want to reuse the schema from Figure 8 for the same
application but without historical records, we can simply delete all of the temporal
symbols and specifications. Similarly, if hospital definitions do not vary regionally,
one need only remove the spatial symbol from the Contains icon and specification
box. In contrast, the modifications required to reuse the schema from Figure 1 are
not nearly so obvious or modular. Each schema element would have to be examined
to determine which model elements would need to be modified or deleted.

If, on the other hand, we want to extend the existing application with another
group of spatiotemporally dependent thematic attributes with shared properties; we
simply add another group to the definition of the Province object class (or
alternatively define a sub-class of Province containing this additional group). The
same extension would be much more complicated in Figure 1, involving the creation

168 Extended Spatiotemporal UML

of a new object class and association for the additional spatial extents and their
associated timestamped thematic attributes respectively. This process substantially
complicates the extended schema and reduces its readability.

The specification box aids readability by providing a clear and consistent
framework for the detailed specification of spatiotemporal semantics. These
semantics are represented in UML using constraints and notes that are unlikely to
be standardized among users, making the diagram more difficult to read. The
specification box can serve as a guideline for application developers, highlighting
generally relevant semantics to be considered when modeling spatiotemporal data.
This facilitates effective communication and consistent design documentation.

In summary, this paper proposes a UML extension to support applications
requiring a range of spatiotemporal models and types. A clean technique is
introduced for modeling composite data whose components vary depending on
time or location, temporal changes in spatial extents, and changes in the value
of thematic data across time and space. Alternative models of time and change
processes are also supported, as well as valid, transaction, and existence time
dimensions. By introducing a small base set of modeling constructs that can be
combined and applied at different levels of the UML model (including attribute
groups), language clarity and simplicity is maintained without sacrificing expressive
power or flexibility.

The introduction of a thematic symbol and formal rules for combining spatial,
temporal, and thematic symbols provides a consistent and well-defined notation for
representing spatiotemporal semantics. Temporal and spatial associations are treated
in a parallel manner, i.e. to describe model structure.

In addition, we have proposed a definition of object existence time based on
application-defined dependencies of individual object properties and introduced
modeling constructs to reflect these semantics. This allows users to differentiate
between those properties that are still defined when the object does not exist (e.g.,
employee social security number) and other properties that are not (e.g., work
phone number).

Future directions include the classification and specification of spatiotemporal
aggregation constructs and exploiting the behavioral features of UML to describe
operations on spatiotemporal data.

ACKNOWLEDGEMENTS
We thank B. Srinivasan and K. Ramamohanarao for their insightful com-

ments. This research was conducted in part while the first author visited Aalborg
University and supported in part by the Danish Technical Research Council (grant
9700780), the Chorochronos project (EC contract FMRX-CT96-0056), and
Nykredit Corporation.

Price, Tryfona & Jensen 169

REFERENCES
Abraham, T. and Roddick, J.F. (1999). Survey of spatio-temporal databases.

GeoInformatica, 3(1), 61-99.
Becker, L., Voigtmann, A. and Hinrichs, K. (1996). Temporal support for geo-data in

object-oriented databases. Proceedings of Database and Expert Systems
Applications, 79-93.

Booch, G., Rumbaugh, J. and Jacobson, I. (1999). The Unified Modeling Language
User Guide. Reading, MA.: Addison-Wesley.

Claramunt, C. (1995). Managing Time in GIS An Event-Oriented Approach.
Proceedings of the International Workshop on Temporal Databases, 23-
42.

Dionisio, J.D.N. and Cardenas, A.F. (1998). A unified data model for representing
multimedia, timeline, and simulation data. IEEE Transactions on Knowledge and
Data Engineering, 10(5), 746-767.

Faria, G., Medeiros, C.B. and Nascimento., M.A. (1998). An extensible framework for
spatio-temporal database applications. Time Center Technical Report TR-27,
1-15.

Fowler, M. (1997b). Analysis Patterns: Reusable Object Models. Menlo Park,
CA: Addison-Wesley.

Fowler, M. and Scott, K. (1997a). UML Distilled. Reading, MA.:Addison-
Wesley.

Gregersen, H. and Jensen, C.S. (1999). Temporal entity-relationship models—A
survey. IEEE Transactions on Knowledge and Data Engineering, 11(3),
464-497.

Henderson-Sellers, B. and Barbier, F. (1999). Black and white diamonds. Proceedings
of Unified Modeling Language, 550-565.

Jensen, C.S. and Dyreson, C.E. (Eds.). (1998). The consensus glossary of temporal
database concepts. Temporal Databases: Research and Practice, 367-405.
Berlin: Springer-Verlag.

Langran, G. (1993). Time in Geographic Information Systems. London: Taylor
& Francis.

OMG Unified Modeling Language Specifications, version 1.3. (1999, June).
Needham, MA: Object Management Group, 1-808. Retrieved May 19, 2000
from World Wide Web: http://www.ftp.omg.org/pub/docs/ad/99-06-08.pdf.

Parent, C., Spaccapietra, S. and Zimanyi, E. (1999). Spatio-temporal conceptual
models: Data structures + space + time. Proceedings of the 7th ACM Symposium
on Advances in Geographic Information Systems.

170 Extended Spatiotemporal UML

Pequet, D.J. and Duan, N. (1995). An event-based spatiotemporal data model
(ESTDM) for temporal analysis of geographical data. International Journal of
Geographic Information Systems, 9(1), 7-24.

Price, R., Srinivasan, B. and Ramamohanarao, K. (1999). Extending the unified
modeling language to support spatiotemporal applications. Asia Technology of
Object Oriented Languages and Systems, 163-174.

Price, R., Tryfona, N. and Jensen, C.S. (2000). Supporting conceptual modeling of
complex spatial relationships. Chorochronos Technical Report# CH-00-5, 1-31
(in process).

Rumbaugh, J., Jacobson, I. and Booch, G. (1999). The Unified Modeling Language
Reference Manual. Reading, MA.: Addison-Wesley.

Tryfona, N. and Jensen, C.S. (1999). Conceptual data modeling for spatiotemporal
applications. Geoinformatica, 3(3), 245-268.

Fernandez, Wu & Hancock 171

Chapter 11

A Design Method for Real-Time
Object-Oriented Systems Using

Communicating Real-Time State
Machines

Eduardo B. Fernandez, Jie Wu, and Debera R. Hancock
Florida Atlantic University, USA

Many methodologies for software modeling and design include some form of
static and dynamic modeling to describe the structural and behavioral views
respectively. Modeling and design of complex real-time software systems
requires notations for describing concurrency, asynchronous event handling,
communication between independent machines, timing properties. Dynamic
modeling of real time systems using object-oriented methodologies requires
extensions to the traditional state machine notations in order to convey the
real-time system characteristics and constraints. This chapter proposes an
object-oriented analysis and design methodology that augments the
traditional UML (Unified Modeling Language) dynamic model with real-
time extensions based on high-level parallel machines and communication
notations from CRSM (Communicating Real-Time State Machines). An
example of the proposed methodology is provided using a realistic example
of an automated passenger train system.

INTRODUCTION
Real-time systems are characterized by their response requirements (dead-

lines) and underlying concurrency of functions. These time-critical systems often
have stringent safety requirements, necessitating that they be highly reliable and

Previously published in Managing Information Technology in a Global Economy, edited by Mehdi
Khosrow-Pour. Copyright © 2001, Idea Group Publishing.

172 A Design Method for Real-Time Object-Oriented Systems

that their functions be predictable when subjected to real-time, concurrent events.
Although the systems may be quite complex, good analysis and design method-
ologies must be simple and understandable while conveying accurately the design
and its real-time aspects. Methodologies for specifying system requirements and
designs typically include some form of requirements specification and notations
for modeling the static, dynamic, and functional aspects of the system. This speci-
fication is often a textual description of the functional characteristics of the system
and alone may not serve to accurately and unambiguously define the require-
ments. Formal languages are required to clearly specify and validate critical sys-
tem requirements such as timing and safety constraints (Heitmeyer & Mandrioli,
1996). For real-time systems where there are often critical timing requirements or
safety considerations, verification of the design and implementation with respect
to formally specified critical requirements is necessary.

Once the requirements are specified, a series of analysis and design steps are
performed that refine and map the requirements to a complete design. With object-
oriented methods, the analysis step includes a representation of the real-world prob-
lem as a static class diagram. This modeling of the real-world problem into indepen-
dent, data-encapsulated classes maps conceptually into the system as a collection of
concurrently active communicating components. In a good methodology, the map-
ping of the problem information described in the requirements specification to the
objects in the static class diagram should be consistent and visibly intuitive.

In practice, the complete system design is typically derived through a series
of refinements from the static analysis model. It is often difficult to pinpoint when
analysis ends and design starts. A series of iterations of lower level analysis and
design steps is performed. Many notations and methodologies have been used
for these steps. With any good methodology, some form of dynamic modeling is
required to model and design the behavior of the system elements over time. State
machines and variations on state machine notations are popular modeling tools for
both object-oriented and functional methodologies. High-level state machines are
often decomposed and refined into lower-level state machines. Sequence dia-
grams and scenario descriptions are examples of design approaches that are used
to refine the operations and states of the lower level state machines.

Many real-time method extensions for function-oriented methodologies have
been proposed and applied to real system development (Gomaa, 1986; Harel et
al., 1990; Leveson & Heimdahl, 1994). Object-oriented design has recently be-
come popular as an alternative for designing complex software systems. It is clear
that the popularity and inherent concurrency of object-oriented designs makes it a
highly desirable approach for producing real-time systems. Methodologies that
map closely to object-oriented methodologies and programming languages have
been developed such as O-Charts (Harel & Gary, 1996), Real-Time Object-

Fernandez, Wu & Hancock 173

Oriented Modeling (ROOM) (Selic et al., 1992), Octopus (Awad, 1996), RT
UML (Douglass, 1998), SOMT (Telelogic), and ObjectGEODE (Verilog). The
Unified Modeling Language,UML, is a comprehensive methodology, encompassing
the entire analysis and design life cycle with modeling of the static, dynamic, and
functional views of the system (Rational, Inc.). Extending UML for real-time sys-
tem preserves the well-understood and readable approach of UML while intro-
ducing extensions necessary for clearly modeling real-time systems.

The dynamic modeling in the standard UML does not provide a mechanism
for visibly distinguishing the physical system concurrency and external events from
the concurrency introduced by the underlying object design. UML also does not
clearly distinguish external communication mechanisms from internal design-ori-
ented communication. This paper proposes modifications to the standard UML
dynamic modeling to include a hierarchical system design based on concurrent
high-level communicating state machines. The notations for UML state diagrams
are modified and extended to include concepts from Communicating Real-Time
State Machines (CRSMs) (Selic & Rumbaugh) and OMT extensions proposed
by M. Chonoles and C. Gilliam (Chonoles & Gilliam).

Section 2 provides an overview of the proposed object-oriented modeling and
design methodology. Sections 3 to 5 use the proposed methodology to model and
design a hypothetical automated Passenger Train System (PTS). This example con-
tains specification elements, analysis model, dynamic model, design refinements, and
some implementation considerations. The last section provides conclusions.

A DESIGN METHODOLOGY
A seamless development approach is utilized from analysis through design in

(Rumbaugh et al., 1991) and this approach is typical of object-oriented method-
ologies. From the specification of the requirements, the problem progresses from
model to detailed design through a series of refinements that use the same or
consistent notations, syntax, and constructs. Details, optimizations, and imple-
mentation considerations are added iteratively. From each step to the next, there
is a clear mapping of the higher level requirements or design elements to the lower
level refinements. This is essential in order to verify that the resulting design and
implementation are correct.

The following steps are used in our methodology:
Requirements Specification: The approach used for specifying the system

functional requirements is a combined formal and informal specification. These
can be expressed also as Use Cases.

Object Oriented Analysis (OOA): The analysis phase used is identical to
the UML analysis phase.

174 A Design Method for Real-Time Object-Oriented Systems

Dynamic Modeling with Communicating Real-Time State Machines:
We propose that the traditional dynamic modeling step from UML be augmented
with a multilevel communicating state machine hierarchy (Shaw, 1992).

Iterative Design Refinement with Sequence Diagrams: Sequence dia-
grams provide a mechanism for illustrating a particular scenario and the associated
events between objects from that scenario.

Communicating real-time state machines (CRSMs) are a notation for speci-
fying concurrent, real-time systems including monitoring and controlling functions
(Shaw, 1992). CRSMs have the notion of synchronous communication between
state machines instead of the UML notation for external events. CRSMs also
have added notations and facilities for describing timing properties and for ac-
cessing real time.

CRSMs are specified in two levels. The first level is the machine level. The
machine level concept is similar to the UML notion of concurrent subsystems and
interaction between subsystems. CRSM machines at the machine level execute
concurrently and independently of one another, except when they directly com-
municate. Machines are distributed (they do not share variables other than the notion
of real time). Machines communicate over channels that connect pairs of machines.
Channels are also uniquely identified with an event or message. A separate channel
is associated with each different communication type between machines. The chan-
nel notation provides a mechanism for arguments or message components that are
the content of the communication.

Each machine from the first level is further refined in the second level as a
serialized finite state machine. These state machines are conceptually similar to
UML state machines although the notations for event transitions differ. The CRSM
state machines have guarded internal commands instead of constrained event tran-
sitions. The CRSM guards are equivalent to the UML constraints.

CRSM commands can be internal or external commands. External com-
mands are I/O commands where “<command> ?” is an input command and “<com-
mand> !” is an output command. These external commands are conceptually similar
to external events in UML notation although the notations for input and output in
CRSM more crisply identify the type of communication than in UML (where the
event name implies the type of communication). CRSM internal commands are
equivalent to transition events and operations in UML.

CRSM provides notations for specifying real-time functions and properties.
An external real-time clock command of “RT(x)?[y]” results in a state transition
and generates a timeout at relative time y, setting to the real time at the time of the
timeout. When the timeout notation is omitted,“RT(x)?[0] or RT(x)?”, the result is
that x is set to the current real time. When the time argument is omitted, “RT?[y]”

Fernandez, Wu & Hancock 175

a pure timeout is generated at relative time y. The CRSM real-time notations are
useful for specifying periodic events and timeouts for real-time constraints.

PASSENGER TRAIN SYSTEMS (PTS)
REQUIREMENTS

This section provides the requirements specification elements for an example
problem that is used to illustrate the proposed methodology. The Passenger Train
System (PTS) example is hypothetical but realistic and was invented for this pur-
pose.

Problem Statement
An amusement park has a passenger train system that allows passengers to

travel from one section of the park to another (Figure 1). Several trains can oper-
ate at one time. The trains all run in the same direction on a track consisting of one
large loop. Passengers embark and disembark the trains at any of several stations
along the track. All trains stop at all stations, regardless of whether or not there are
passengers waiting to board. There is one siding that leads to a storage and main-
tenance depot. Similarly, trains can enter the main track or be returned to opera-
tion by switching them back onto the main track from this siding.

The trains are powered by electric current from a power rail carried in the
tracks. Power to the power rail is managed by a power control system. Each yard
section of track can be powered on and off independently by the power control
system. When no power is applied to a section of track, a train running in that
section cannot accelerate or maintain its speed. As a fail-safe mechanism, a train’s
braking system requires power to be disengaged. This ensures that when a train
loses power, the brakes automatically engage and the train comes to a fast and
smooth stop.

176 A Design Method for Real-Time Object-Oriented Systems

The automatic movement and speed of each train is controlled remotely via
transmitted communication signals. Each train is equipped with a receiver and an
automatic movement control system. The movement control system translates sig-
nals such as “brake,” “accelerate,” and “decelerate” into signals to the train’s
motor and brakes. Each train is also equipped with manual override controls to
move and stop the train. When the manual override is in use, the automatic control
is disabled.

The position of each train is monitored with sensors. Each track section con-
tains entry and exit sensors that detect when a train enters and leaves a section of
track. In addition to detecting the presence of a train, the entry and exit sensors
scan a train’s unique identifier (train ID). The train ID is used by the movement
control system to track the location of each train and to transmit movement con-
trol signals to a particular train.

The speed of each train is continually monitored and managed by a speed
controller. Many speed sensors are placed throughout the main track. The speed
sensors are used to detect the passing of a train at a particular point in time to
determine its current traveling speed.

A special station sensor exists in each station at precisely the point at which
the train is expected to brake for a station stop. Once stopped in a station, a
station operator must manually restart the train upon successful disembarking of
passengers.

The most important design issue is safety of operation. System failures must
result in safe actions. Trains must maintain a safe distance between each other of
at least 1000 yards (two track sections). Trains must never exceed a speed of 45
MPH and should normally travel at a safe speed of 40 MPH. Trains within 500
yards of a station must not exceed a safe station approach speed of 20 MPH. A
traffic controller manages the position of trains. Trains can be automatically slowed,
sped up, stopped, and restarted to handle the traffic flow.

In addition to being safe, the train system should be convenient for passen-
gers. Trains should depart within 10 minutes of arrival at a station. A station stop
exceeding this time results in warning messages to the station operator and auto-
matic slowing of any train approaching the station. Trains should travel as quickly
as possible (within the safety parameters) between stations to maintain passenger
satisfaction.

Problem Focus
The system development example here focuses primarily on the major con-

trol functions of the Passenger Train System (PTS). Particular emphasis is placed
on the modeling of the interaction and behavior of the traffic and speed controllers
and their lower-level components. To ensure focus on the key controllers, the

Fernandez, Wu & Hancock 177

following simplifying assumptions have been made: (1) Only the interaction be-
tween the power controller and the other controllers of the PTS are included in the
design; (2) The switches and track sections that are part of the storage and main-
tenance depot are included in the problem description to indicate that a variable
number of trains can be running in the PTS at one time. The siding elements are not
included in the PTS design; (3) Interactions between the automatic controller on a
train and its motor and brake systems are included in the design; (4) The focus of
this work is on the object-oriented model and design and its real-time character-
istics. Specific algorithms for computing train speed and managing tables of data
are not included; (5) The physical configuration of stations and track sections is
known in advance (it is part of the PTS setup program). This permits the use of
attributes such as “section number,” functions such as “Has Station(section num-
ber),” and constants such as “MAX SPEED” and “SAFE SPEED” to be used in
the design; (6) A separate power mechanism is maintained for powering the sen-
sors. Power to the sensors is not dependent on power in the power rail of that
track section.

Naming conventions are used throughout this design example to simplify the
figures and specifications. Many of these naming conventions and definitions are
used to define the safe behavior of trains traveling in different regions of the PTS
track under different traffic conditions. These regions are illustrated in Figure 2.
For example, when train A occupies track section 6, the condition for train B in
track section 1 is “SAFE AHEAD.” If train B gains on train A, and train B moves
into track section 2 while track section 6 is occupied, the condition for train B in
track section 2 is “TRAFFIC WARNING.”

Table 1 provides a list of all of the shorthand naming conventions associated
with the initial configuration of the PTS (track and stations) as well as the initial
number of trains in the operational track sections. Table 2 provides a list of all of the
naming conventions for track conditions that change depending on the position of
trains and naming conventions associated with a train’s speed.

Where safety and timing issues are critical, formal specifications are required.
This section provides property-based specifications for the key areas of train

Figure 2: Illustration of Traffic Regions

178 A Design Method for Real-Time Object-Oriented Systems

location, movement, spacing, and speed as well as the status of the PTS power.
Similar property-based specifications are described in (Heitmeyer & Mandrioli,
1996). These specifications can be used in later development of test cases to
validate the critical aspects of the design and implementation. Throughout the
formal specification, the symbol ‡ is used for “implies.”

Train Location: This section specifies the exact position of a train with re-
spect to a particular track section based upon the entry and exit sensor detection.

The front of a train enters a track section: For some values of i and j,
Entered(PTi ,TSj) = True ‡ the entry sensor in track section TSj has detected that
passenger train PTi has entered track section TSj but the entry sensor in TS(j+1)
has not yet detected passenger train PTi.

Table 1: Naming Conventions for PTS Configuration

Table 2: Naming Conventions for Track Conditions and Train Speed

Fernandez, Wu & Hancock 179

The back of a train exits a track section: For some values of i and j, Exited(PTi,
TSj) = True ‡ the exit sensor in track section TSj has detected that passenger train
PTi has exited track section TSj.

A train is entirely within one track section: For some values of i and j Entered
(PTi, TSj) AND NOT Exited(PTi,TSj) ‡ Within(PTi,TSj).

Power Status: This section specifies the enablement and disablement of the
PTS with respect to the status of power to the power rails for each track section.
It also specifies the effect that removing power from a power rail where a train is
traveling will have on the motion of the train.

PTS is enabled: For all i, i = 1 to n, HasPower(TSi) = True ‡ EnabledPTS =
True.

PTS is disabled: DisabledPTS = True ‡ for all i, i = 1 to n, HasPower(TSi) =
False.

Removing power from a track section stops a train that has entered the sec-
tion: For some time t, and some train PTi in track section TSj. i = 1 to m and j =
1 to n, HasPower(TSi) = False ‡ at time t + d, Speed(PTi) = 0, where d is the
time it takes to stop the train when its brakes are fully applied.

Train Movement: This section specifies the direction of movement of trains
Trains travel in the same direction on the track: For some values of i and j,

Within(PTi, TSj) ‡ NextTrackSection(PTi) = TS(j+1) (mod n).
Train Spacing: This specifics the minimum safe distance between trains.
Trains always have two track sections between them: For all i, i = 1 to n,

Occupied(TSi) ‡ Available(TS(i-1) (mod n)) AND Available(TS(i-2) (mod n)).
Train Speed: This specifies the safe operating speed of trains.
Trains do not exceed the maximum speed: For all values of time t, and all

values of i, i = I to m, Speed(PTi) £ MAX SPEED.
Trains approaching stations do not exceed the safe approach speed: For all

values of time t, and all trains PTi in track section TSj, i = 1 to m, j = 1 to n,
HasStation(TS(j+1) (mod n)) ‡ Speed(PTi) £ STATION SPEED.

STATIC ANALYSIS OF THE PTS
The class diagram of Figure 3 illustrates the objects from the real world problem

and their relationships with each other. Multiplicity is also illustrated for objects
that have identical copies (e.g., trains). Behavior and timing are introduced in the
dynamic model. Fault tolerance can be introduced as a design refinement although
we do not consider it in this paper.

The class diagram depicts the PTS as an aggregation of three main control-
lers. These controllers (Power Controller, Traffic Controller, and Speed Control-
ler) represent the three main independent control functions required to manage
operational functions of the PTS.

180 A Design Method for Real-Time Object-Oriented Systems

The Power Controller manages the power aspects of the PTS. It contains the
power station that provides power to the power rails. The power rails are part of
the Power Controller since they are turned on and off by the Power Controller.
There is a power station operator. The operator class represents the user interface
for the real-world power station operator (e.g., displays and manual operations).

The Traffic Controller manages the position of trains on the track. It contains
the track, consisting of multiple connected track sections and multiple stations.
An association between a track section and a power rail is included to show the
physical configuration of track sections carrying the power rails that power the
trains. For each station there are station operators. The station operators are
included since they manage the movement of trains once the train is stopped in the
station. Trains do not depart the station automatically. When a train is detained in
a station (past the expected 10 minute soft deadline), warning messages are dis-
played on the station operator’s display.

The Traffic Controller class also contains a location monitor. The location
monitor manages thefeedback from the entry, exit, and station sensors to deter-
mine the train locations and appropriate actions for traffic control. Associations
are included to indicate that an entry sensor begins a track Section and an exit
sensor ends a track section.

The Speed Controller controls the physical movement of trains and manages
the speed of trains to maintain safe operating conditions. As such, it accepts and
acts on train movement messages from the Traffic Controller. The Speed Control-
ler contains a speed monitor that continually receives events from the speed sen-
sors along the track to determine the measured speed of the trains. The Speed
Controller attempts to adjust the train speeds whenever speed limits or thresholds

Figure 3: OOA Class Diagram

Fernandez, Wu & Hancock 181

are reached. The Speed Controller also contains a transmitter that is used to send
movement signals to the trains. Each train has an automatic control system that is
driven by signals received from the transmitter. An association between the trains
and the power rails is shown to indicate that a train gets its power from the power
rails.

The four types of sensors in the PTS have basic characteristics and opera-
tions in common. They inherit certain of these attributes from the generalized Sen-
sor class.

PTS CONTROL SYSTEM DYNAMIC MODELING AND
DESIGN

The high-level communicating machine model is developed from the PTS
problem description and class diagram. The events in the low-level state machines
are derived and refined using sequence diagrams for normal operational scenarios
defined by use cases in the requirements specification (including normal handling
of failures). These sequence diagrams are not shown here because of space limi-
tations.

In the proposed augmented methodology, the first dynamic modeling step is
to create a high-level model of the concurrent machines of the system. For the
PTS, the major concurrent activities are the Power Controller, Traffic Controller,
and Speed Controller. Every train in the PTS also runs independently and concur-
rently, each with its own automatic and manual controller. The sensors are all
independent external entities as well. For these high-level machines, external com-
munication is required for event notification, command communication, and syn-
chronization of system states. The high-level communicating state machine model

182 A Design Method for Real-Time Object-Oriented Systems

in Figure 4 depicts the physical elements of the system. It is easily derived from the
class diagram.

Although it is straightforward to create the high-level machine models from
the problem description and the classes in the analysis model, the communication
channels themselves are derived through iterative modeling and design of the con-
troller details. After the initial high-level model, each major controller state ma-
chine is modeled to determine the key states, activities, and communication re-
quirements. In some cases, each successive refinement of the more detailed state
machines indicates necessary modifications to the structure of the high level ma-
chines that were not apparent in the initial model. Care should be taken, however,
not to introduce implementation-level details into the high-level analysis model.
Details such as object creation and destruction associated with programming lan-
guages; although required at the implementation level, only introduce complexity
and confusion into the high-level model.

The first controller that starts when the PTS system is initiated is the Power
Controller. Once good power status of the system has been determined, the Power
Controller starts the Traffic Controller with a PTSenabled message. If at any
point in the operation of the PTS, power is disabled, the Power Controller will
give the Traffic Controller a PTSdisabled message.

Once started, the Traffic Controller starts the Speed Controller with the
StartPTS command. Similarly, when the Traffic Controller is given the PTSdisabled
message, it also stops the Speed Controller with the StopPTS command.

The Traffic Controller manages the location of trains with respect to each
other and also with respect to their proximity to stations. The Traffic Controller
can detect certain failure cases when a train does not appear to be responding to
normal control signals. To prevent catastrophic events, the Traffic Controller can
request that specific track sections be powered off (Poweroff command) or that all
track sections in the TS be powered off (Disable command).

There are multiple independent machines modeled for each of the many en-
try, exit, and station sensors. These machines are all very similar in that they con-
tinually scan passing trains, reading the train ID when a train passes. Upon detec-
tion, each sensor notifies the Traffic Controller of the event by sending the appro-
priate event notification message and event data. For all entry, exit, and station
events, the Traffic Controller receives two pieces of information; the section num-
ber identifying the particular sensor location and the train ID of the passing train.

The Traffic Controller communicates with the Speed Controller to request
that the speed of trains be changed (ChangeSpeed message). The Traffic Con-
troller issues these commands to control the flow of traffic in the PTS. For ex-
ample, when a train is approaching a station, the Traffic Controller requests that
the train’s speed be reduced to the station approach speed (STATION SPEED)

Fernandez, Wu & Hancock 183

of 20 MPH. When a train departs a station, the Traffic Controller requests that the
train’s speed be increased to the normal safe speed (SAFE SPEED). The Traffic
Controller monitors the position of trains and issues requests to the Speed Con-
troller to adjust the speed (and therefore position) of trains. When the Traffic
Controller needs to stop a train under normal operating conditions, it issues a
ChangeSpeed message with a speed of zero.

Through the speed sensors, the Speed Controller monitors the externally
measured speed of trains and sends speed control signals to trains. There are
many speed sensors in the PTS. These speed sensors are very similar in operation
to the other sensors in that they scan for the passing of trains and report the event
and train ID to the Speed Controller. Since there are many more speed sensors
than track sections, the speed sensors must each have a unique identifier that
identifies their location to the Speed Controller. Using the speed sensor data, tha
Speed Controller can detect when a train may be traveling beyond the safety
speeds. When all normal attempts to slow a speeding train have failed, the Speed
Controller will give a Runaway train message to the Traffic Controller.

The Traffic Controller also notifies the Speed Controller when a particular
train is approaching or departing a station (StationTraffic message). The Speed
Controller uses this notification to set the appropriate top speed for the train.

CONCLUSIONS
We have proposed a methodology for the modeling and design of real-time

systems and we have shown here the static and dynamic analysis stages. Although
based upon UML concepts and process steps, unique process steps enhance the
traditional UML for real-time systems. Specifically, we included property-based
formal specification to ensure that the system specification accurately describes
the critical constraints and behavior; these are useful to verify timing constraints.
High-level communicating real-time machine modeling was added as a refinement
of the static class diagram; these model concurrency and external communication
paths. New notations were introduced to convey the real-time behavior and events
of the dynamic model (communicating state machines). We also showed a unique,
hypothetical example of a complex real-time system. The example is used to illus-
trate the process steps of the methodology and to refine the methodology. In a
companion paper we show how to extend these ideas to consider fault tolerance
(Douglass, 1998). The methodology does not include detailed design or imple-
mentation aspects or a way to validate the timing constraints specified. In this
sense, this is not a complete real-time methodology, such as ROOM (Selic et al.,
1992) or Octopus (Awad et al., 1996), but it could be used to complement one of
these approaches.

184 A Design Method for Real-Time Object-Oriented Systems

A strength of our extended CRSMs is that they specify timing aspects and
concurrency in a natural way. This is not always true in some real-time methodolo-
gies; for example, Gomaa (1986) and Douglass (1998), do not consider time
constraints explicitly.

Other related methodologies are:
Harel’s O-charts (1996). They are more implementation oriented (to C++)

but do not seem to handle communication and concurrency so precisely as our
extended CSRMs.

RSML (Leveson & Heimdahl, 1994), emphasizes requirements aspects and
uses another type of state model. However, that approach doesn’t include data
aspects and is not oriented to concurrency.

Telelogic’s SOMT and Verilog’s ObjectGeode use SDL as dynamic model
because of the need for more formalization and explicit concurrency. Our ap-
proach is an alternative to using SDL.

REFERENCES
Awad, M., Kuusela, J. and Ziegler, J. (1996). Object-Oriented Technology for

Real-Time Systems. Englewood Cliffs, NJ: Prentice-Hall.
Chonoles, M. J. and Gilliam, C. C. (1995). Real-time object-oriented system

design using the object modeling technique (OMT). Journal of Object Ori-
ented Programming, June, 16-24.

Douglass, B. P. (1998). Real-time UML: Developing Efficient Objects for
Embedded Systems. Reading, MA: Addison-Wesley.

Fernandez, E. B., Wu, J. and Hancock, D. (1999). A design methodology for
object-oriented real-time fault-tolerant systems. Report TR-CSE-99-20, Dept.
of Comp. Science and Eng., FAU.

Gomaa, H. (1986). Software development of real-time systems. Communica-
tions of the ACM, 29(7), July, 657-668.

Harel, D. and Gery, E. (1996). Executable object modeling with statecharts. Pro-
ceedings of the 18thInternational Conference on Software Engineering,
246-257. IEEE Press. March.

Harel, D., Lachover, H., Naamad, A., Pnueli, A., Politi, M., Sherman, R., Shtull-
Trauring, A. and Trakhtenbrot, M. (1990). STATEMATE: A working environ-
ment for the development of complex reactive systems. IEEE Transactions
on Software Engineering, 16(4), April, 609-620.

Heitmeyer, C. and Mandrioli, D. (1996). Formal Methods for Real-Time Com-
puting: An Overview. New York: John Wiley & Sons.

Fernandez, Wu & Hancock 185

Leveson, N. G. and Heimdahl, M. P. E. (1994). Requirements specification for
process-control systems. IEEE Transactions on Software Engineering, 20(9),
September, 684-707.

Rational Inc. Unified Modeling Language http://www.rational.com/uml.
Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorensen, W. (1991).

Object Oriented Modeling and Design. Englewood Cliffs, NJ: Prentice Hall.
Rumbaugh, J., Jacobson, I. and Booch, G. (1999). The Unified Modeling Lan-

guage Reference Manual. Reading, MA: Addison-Wesley.
Selic, B., Gullekson, G., McGee, J. and Engelberg, I. (1992). ROOM; An ob-

ject-oriented methodology for developing real-time systems. Proceedings on
the Fifth International Workshop on Computer-Aided Software Engineer-
ing, 230-240.

Selic, B. and Rumbaugh, J. Using UML for modeling complex real-time systems.
http://www.rational.com/products/rosert.

Shaw, A. C. (1992). Communicating real-time state machines. IEEE Transac-
tions on SoftwareEngineering, 18(9), September, 805-816.

Telelogic. Combining object-oriented analysis and SDL design, http://
www.telelogic.com

Verilog. ObjectGEODE, http://www.csverilog.com/products.

186 Java Integrated Development Environments’ Support

Chapter 12

Java Integrated Development
Environments’ Support for Reuse-
Oriented Software Development

Jenni Ristonmaa, Jarmo Ahonen, and Marko Forsell
University of Jyväskylä, Finland

Component reuse is a promising direction to develop software more efficiently
and cost effectively. One part of software development is the actual
programming with an integrated development environment (IDE). We studied
three Java IDEs and how they support reuse-oriented software development.
We derived evaluation criteria from a known reuse model. As a conclusion
we suggest that current Java IDEs need to improve their support for the
reuse process.

INTRODUCTION
To cope with the current trend to produce quality software in tightening sched-

ules software developers see reuse as one possible answer (e.g., Lim, 1997; McIllroy,
1968). Reuse of components is one approach to handle reuse (Biggerstaff & Rich-
ter, 1987). The basic idea in component reuse is to use some results of the develop-
ment effort more than once (Basili et al., 1992; Krueger, 1992). To be successful,
reuse has to be systematic: it has to be planned in advance and it must be acknowl-
edged in every phase of software development cycle (Lim, 1997). One part of this
cycle is programming. Here integrated development environments (IDEs) are espe-
cially important. Early IDEs included such tools as an editor and a compiler but
currently these environments may include, among other things, source code control,
library management, support for workgroups, and version control (Kölling &
Rosenberg, 1996).
Previously published in Managing Information Technology in a Global Economy, edited by Mehdi
Khosrow-Pour. Copyright © 2001, Idea Group Publishing.

Ristonmaa, Ahonen & Forsell 187

Java has emerged as one of the most popular programming languages and its
advantage is that it closely follows emerging trends in software development. One
such trend is the support for component-based development in the form of
JavaBeans standard. JavaBeans brings component technology to the Java plat-
form. With JavaBeans you can create reusable, platform-independent compo-
nents (Sun, 2000).

Our research question is: “Do Java IDEs support the creation and reuse of
code components?” As the only components supported by the chosen IDEs are
JavaBeans, we limited our study to JavaBeans components.

SELECTION OF JAVA IDEs AND RESEARCH
METHOD

We selected three Java IDEs that reflect the current state-of-the-practice in
Java programming. We chose the environments considering the market share and
how well the supplier is known. Using our criteria we selected:

• Forte for Java Community Edition 1.0 Windows Version by Sun Microsystems
Inc.,

• Borland JBuilder 3.0 Professional by Inprise Corporation, and
• VisualAge for Java Enterprise Edition Version 3.0 by IBM.

We planned to use Visual J++ 6.0 Professional Edition from Microsoft but
we excluded it for its strong orientation towards ActiveX and Windows.

We wanted to find out how Java IDE supports reuse processes involved in
component (JavaBean) reuse. To base our evaluation framework on a well known
model we chose Lim’s (1997) reuse model over alternatives (e.g., NATO, 1992,
Karlson, 1995, see Forsell et al., 2000). Lim’s model is not biased toward any
specific implementation technology and it includes code components as well as
other software development artifacts (assets in Lim’s vocabulary). Figure 1 shows
Lim’s reuse model, its four major activities, and tasks in them.

Figure 1. The Reuse Process (Lim, 1997)

1. Managing the Reuse Infrastructure

2. Producing Reusable
 Assets
 2.1 Analyzing Domain
 2.2 Producing Assets
 2.3 Maintaining and
 Enhancing Assets

3. Brokering Reusable
 Assets
 3.1 Assessing Assets for
 Brokering
 3.2 Procuring Assets
 3.3 Certifying Assets
 3.4 Adding Assets
 3.5 Deleting Assets

4. Consuming Reusable
 Assets
 4.1 Identifying System
 and Asset Requirements
 4.2 Locating Assets
 4.3 Assessing Assets for
 Consumption
 4.4 Integrating Assets

188 Java Integrated Development Environments’ Support

Because Lim’s model is not focused solely on the code component reuse it
has activities and tasks which are irrelevant for the programming phase. We argue
that the following tasks are not and should not be concern for IDE: analyzing
domain, component assessing, procuring an asset, certifying an asset, identifying
system requirements, and assessing assets. Also, managing the reuse infrastruc-
ture as a whole is not a concern for IDE.

RESULTS OF THE EVALUATION
The results of the evaluation are presented below. The main interest is in the

differences and interesting features.

Producing a Component
All IDEs have fairly similar tools and techniques. The main tools are wizards

and dialogues, but only VisualAge offers dialogs for the creation and addition of
methods. Only VisualAge creates the BeanInfo class for the produced compo-
nent. With JBuilder and Forte users have to add the BeanInfo manually, which is
easy. The possibility to create this functionality by using visual tools is present only
in VisualAge.

Forte feels slow, which makes it difficult to use, and its structure of menus is
not consistent or intuitive. JBuilder offers methods to add comments to the code
and its BeanExpress is well thought out. VisualAge offers fairly sophisticated and
usable visual tools for the creation of components, it is even possible to create
complicated components with minimal programming. In VisualAge a great deal of
functionality can be defined by applying the visual tools.

VisualAge is clearly the best tool for producing components. JBuilder has
better structure and is more practical than Forte.

Maintaining and Enhancing a Component
Maintenance and enhancement generally means bug removal and feature en-

hancement. Maintenance is unnecessarily complicated if IDE allows users to save
source code components without compilation. VisualAge allows users to save
and add source-level components, but it compiles the code before saving the
component. Forte allows users to save incorrect components. JBuilder allows
only .class- and .JAR-files to be saved as JavaBeans requiring fairly strict con-
formance from components. Unfortunately all environments allow users to modify
components in incorrect ways.

The only IDE of these three to support versioning of components is VisualAge.
This feature is important when considering the support offered by IDEs for main-
tenance and enhancement.

Ristonmaa, Ahonen & Forsell 189

Adding a Component
In Forte and VisualAge it is possible to add source code components to the

menu structure. In VisualAge those components are confirmed to be at least syn-
tactically right. JBuilder allows only .class- and .JAR-files to be added to the
menu structure.

All IDEs have specific menu structures into which components should be
added. Both VisualAge and JBuilder allow users to add their own components to
any position in a JavaBeans menu structure. Forte stops working if users try to
add a component to any other position than the Beans-sheet. JBuilder and
VisualAge offer a straightforward and logical way for adding components. In Forte
the technique is more complicated and not so easy to use.

Deleting a Component
The support for removing a component from the menu structure is present in

JBuilder and VisualAge, while Forte has no such support. If users want to delete
components from Forte, they have to use filesystem tools and remove the files
associated with the components.

The deletion of a component is immediately shown in the menu structures of
VisualAge. JBuilder and Forte remove the component from the menu structure only
after the IDE has been restarted.

Identifying a Component
IDEs do not identify the JavaBeans or Enterprise JavaBeans component require-

ments correctly. The only requirement identified by every IDE is that the component
class must be public. JBuilder often correctly identifies all requirements, but it makes
mistakes. VisualAge checks if the component is syntactically right and if it is generated
by using the automatic tools of VisualAge it fulfills all requirements.

Locating a Component
The menu structures reserved for components are very similar and they are

easy to use. The menu structures do not support classification of components, al-
though every IDE has specific menu sheets or structures for custom components
and components shipped with the IDE. The only IDE which offers additional tools
for the location of components is VisualAge with its Choose Bean tool.

Integrating a Component
Only VisualAge and Forte have visual tools for the integration of compo-

nents. Users can either use those tools or do the integration through traditional
programming, or users may use a combination of programming and tools. In this
respect VisualAge is more sophisticated than Forte.

190 Java Integrated Development Environments’ Support

The Best Features and Ranking of the Evaluated IDEs
The evaluated IDEs are considered in the perspective of Lim’s model. The

best features of Forte are its visual tools for component integration and intuitively
appealing naming conventions in its menu structures. The best feature of JBuilder
is that it allows only .class and .JAR -files to be added as components, and its
BeanExpress-tool is a good tool. The best features of VisualAge are the versioning
of classes, its visual integration tools, its tool for component location, and its auto-
matic compilation of source code before saving.

The IDEs have been ranked according the results and the answers in table 1.
The ranking is shown in Table 2 (1 = best, 3 = worst).

Table 1: Additional Questions for Ranking.

Table 2: The Ranking of the IDEs

Ristonmaa, Ahonen & Forsell 191

DISCUSSION
We have evaluated Java IDEs from the point of view of how they support

reuse process. We based our evaluation on Lim’s reuse model and derived evalu-
ation criteria from it. It seems that Java IDEs, in general, still need improvement.
IBM’s environment shows promising directions for future in keeping with their
efforts to provide reuse-oriented features. The support for reuse requires im-
provement.

Companies can use these results and our approach when they want to choose
a Java IDE for themselves. However, this implies that companies know their needs
for reuse support and find out which tool fits these needs best. Furthermore, we
believe that the evaluation method is not limited to the evaluation of Java IDEs, it
can be used to evaluate any programming language specific IDE. Also, Lim’s
framework as a whole can be used to evaluate software development methods
(Forsell et al. 2000), and we believe it can be used to evaluate software engineer-
ing environments, i.e. repositories, CASE tools, and project management tools.

Main limitation of the study is that it focuses on Java language and three Java
IDEs. We need more research on how to add reuse support in any IDE. Further-
more, IDEs and other tools that support software development should be inte-
grated more closely together and these should support and integrate components
in different levels of abstraction from the reuse point of view.

REFERENCES
Basili, V., Caldiera, G. and Cantone, G. (1992). A reference architecture for the

component factory. ACM Transactions on Software Engineering and Meth-
odology, 1(1), January, 53-80.

Biggerstaff, T. and Richter, C. (1987). Reusability framework, assessment, and
directions. IEEE Software, March, 41-49.

Forsell, M., Halttunen, V. and Ahonen, J. (2000). Use and identification of com-
ponents in component-based software development methods. Software Re-
use: Advances in Software Reusability, Proceedings of the 6th International
Conference, ICSR-6, 284-301.

Karlson, E. (Ed.). Software Reuse: A Holistic Approach. Chichester: John Wiley
& Sons.

Kölling, M. and Rosenberg, J. (1996). An object-oriented program development
environment for the first programming course. Proceedings of the Twenty-
Seventh SIGCSE Technical Symposium on Computer Science Education,
83-87.

Krueger, C. (1992). Software reuse. ACM Computing Surveys, 24(2), June,
131-182.

192 Java Integrated Development Environments’ Support

Lim, W. (1997). Management of Software Reuse. Reading, MA: Addison-
Wesley.

McIlroy, D. (1976). Mass produced software components. Report on a confer-
ence by the NATO science committee, Garmish, Germany, October 7-11 1968.
In Naur, P., Randel, B. and Buxton, J. (Eds.), Software Engineering: Con-
cepts and Techniques, 88-98. New York: Petrocelli/Charter.

NATO. (1992). NATO standard for the development of reusable software com-
ponents. Volume 1 (of 3 documents). http://www.asset.com/WSRD/abstracts/
archived/ABSTRACT_528.html, accessed 1st of June 2000.

Sun. (2000). http://java.sun.com/docs/books/tutorial/javabeans/index.html, ac-
cessed 11th of September 2000.

Siau 193

Chapter 13

Information Modeling and
Method Engineering:

A Psychological Perspective

Keng Siau
University of Nebraska-Lincoln, USA

Information modeling is the cornerstone of information systems analysis and
design. Information models, the products of information modeling, not only
provide the abstractions required to facilitate communication between the
analysts and end users, but they also provide a formal basis for developing
tools and techniques used in information systems development. The process
of designing, constructing, and adapting information modeling methods for
information systems development is known as method engineering. Despite
the pivotal role of modeling methods in successful information systems
development, most modeling methods are designed based on common sense
and intuition of the method designers with little or no theoretical foundation
or empirical evidence. Systematic scientific approach is missing! This paper
proposes the use of cognitive psychology as a reference discipline for
information modeling and method engineering. Theories in cognitive
psychology are reviewed in this paper and their application to information
modeling and method engineering are also discussed.

Even though research in systems analysis and design has been going on
for over 40 years, successful software development is still an art rather than
a science. In the 1980s, Jones (1986) observed that a typical project was one
year late and 100% over budget. Yourdon (1989) reported application
backlogs of four to seven years or more. The maintenance phase typically
consumed up to 70% of the programmer’s effort, and it was errors, not
enhancements, that accounted for 40% of maintenance (Rush, 1985). Page-

Previously published in the Journal of Database Management, vol.10, no.4, Copyright © 1999, Idea Group
Publishing.

194 Information Modeling and Method Engineering

Jones (1988) wrote: “It looks as if traditionally we spend about half of our time
making mistakes and the other half of our time fixing them.”

We are, however, no better as we move toward the end of this century.
The IBM’s Consulting Group (Gibbs 1994) released the results of a survey of
24 leading companies that had developed large distributed systems. The
numbers were unsettling: 55% of the projects cost more than budgeted, 68%
overran their schedules, and 88% had to be substantially redesigned. A recent
high-profile failure is the Denver Airport baggage-handling system, respon-
sible for delaying the opening of the airport. The Standish Group research
(Chaos 1995) predicted that a staggering 31.1% of projects would be canceled
before they ever get completed and 52.7% of projects would cost 189% of
their original estimates.

In the early days of computerized information systems, technological
failure was the main cause in the failure of business data processing systems
(Avison & Fitzgerald 1995). Today, the failure of information systems is
rarely due to technology that is on the whole reliable and well tested. Failure
is more likely to be caused by miscommunication and misspecification of
requirements. Similar sentiments were echoed in the Standish Group’s report
(Chaos, 1995) which listed incomplete requirements and specifications as the
second most important factor that caused projects to be challenged and the top
factor that caused projects to be impaired and ultimately canceled (Chaos,
1995). A recent survey of hundreds of Digital’s staff and an analysis of the
corporate planning database revealed that on average, 40% of the require-
ments specified in the feasibility and requirements phase of the life cycle were
redefined in the later phases. This cost Digital an average of 50% more than
the budgeted amount (Hutchings & Knox, 1995).

The process of investigating the problems and requirements of the user
community, and building an accurate and correct requirement specification
for the desired system is known as information modeling (Siau, 1999; Siau &
Rossi, 1998; Siau et al., 1997; Mylopoulos, 1992, Rolland & Cauvet, 1992;
Kangassalo, 1990).

INFORMATION MODELING
Information modeling is the process of formally documenting the prob-

lem domain for the purpose of understanding and communication among the
stakeholders (Siau, 1999; Siau, 1998; Mylopoulos, 1992). Information
modeling is central to information systems analysis and design, and takes
place in the early phases of the software development life cycle. The product
of the information modeling process is one or more information models (e.g.,

Siau 195

data flow diagrams, entity-relationship diagrams, use cases, activity dia-
grams, sequence diagrams). Information model provides a conceptual basis
for communicating and thinking about information systems (Willumsen,
1993), and a formal basis for tools and techniques used in the design and
development of information systems (Kung & Solvberg, 1986).

Information models are constructed using information modeling method,
which can be defined as an approach to perform modeling, based on a specific
way of thinking, consisting of directions and rules, and structured in a
systematic way (Brinkkemper 1996). There is no shortage of information
modeling methods in the field. In fact, it is a “methodology jungle” out there
(Avison & Fitzgerald, 1995). Olle et al. (1982) and Bubenko (1986) stated
that the field was inundated by hundreds of different modeling methods.
Recently, Jayaratna (1994) estimated that there were more than a thousand
brand name methodologies worldwide. The quest to develop the next
modeling method has been wittily termed the YAMA (Yet Another Modeling
Approach) syndrome (Oei et al., 1992) and NAMA (Not Another Modeling
Approach) hysteria (Siau et al., 1996). Even the new kid on the block, object
oriented approach, has more than a dozen variants. Despite the “impressive”
number, miscommunication and misspecification continue (Chaos, 1995).

To reduce the chances of misunderstanding and miscommunication
during information modeling, the use of natural and intuitive modeling
constructs (e.g., entity, relationship, object) in information modeling methods
has been stressed and advocated (e.g., Chen, 1976; Coad & Yourdon, 1991).
This, they claimed, would enable end-users to better understand the informa-
tion depicted in the information model and to pinpoint incomplete or incorrect
information in the model.

METHOD ENGINEERING AND MODELING
CONSTRUCTS

Modeling constructs are semantic primitives that are used to organize
and represent knowledge about the domain of interest (Sernades et al., 1989).
Modeling constructs form the core of an information modeling method.
Method engineering is the process of designing, constructing, and adapting
modeling methods for the development of information systems (Siau, 1999;
Siau, 1998; Brinkkemper, 1996). To design, construct, and adapt methods,
we need to understand the role and value of each modeling construct.

The importance of modeling constructs can be viewed from two perspec-
tives: ontology and epistemology of information systems analysis and design.
Ontology is concerned with the essence of things and the nature of the world

196 Information Modeling and Method Engineering

(Wand & Weber, 1993; Avison & Fitzgerald, 1995). The nominalist position
in ontology argues that “reality is not a given immutable “out there,” but is
socially constructed. It is the product of human mind” (Hirschheim & Klein,
1989). The choice of modeling constructs, therefore, directly influences what
the modeling method regards as important and meaningful versus what it
suggests as unimportant and irrelevant. For example, the use of the entity-
relationship (ER) approach emphasizes entities and relationships but ignores
the processes involved. The use of the object-oriented (OO) approach, on the
other hand, emphasizes objects and the behavior of objects.

Epistemology relates to the way in which the world may be legitimately
investigated and what may be considered as knowledge (Avison & Fitzgerald,
1995). The choice of modeling constructs constrains how one can know or
learn about reality—the basis of one’s claim to knowledge (Klein & Lyytinen,
1983; Walsham, 1993). Users of the entity-relationship approach, for
example, would focus on identifying entities and relationships whereas users
of data-flow diagram (DFD) would emphasize the eliciting of processes, data
flows, external entities, and data stores from the problem domain.

Despite the importance of modeling constructs, not much research has
been done in this area. Most modeling constructs are introduced based on
common sense, superficial observation, and intuition of researchers and
practitioners. Theoretical foundation and empirical evidence are either non-
existent or considered non-essential. For example, Coad and Yourdon (1991,
p. 16) nicely summed up the practitioners’ scant concern:

“It would be intellectually satisfying to the authors if we could report
that we studied the philosophical ideas behind methods of organiza-
tion, from Socrates and Aristotle to Descartes and Kant. Then, based
on the underlying methods human beings use, we could propose the
basic constructs essential to an analysis method. But in truth we
cannot say that, nor did we do it. “(emphasis added)
With this laissez-faire attitude, one can not help but cast doubts on the

usefulness and importance of some of these modeling constructs. It is
probable that some of these constructs are not actually actors in the modeling
drama, but merely incidental artifacts, created by researchers to help them
categorize their observations. These artifacts may play no significant role
whatsoever in modeling the real world. A reference discipline to guide the
design, construction, and adaptation of modeling constructs for information
modeling methods is needed!

In this paper, we propose the use of cognitive psychology as a reference
discipline in the engineering of methods and the studying of information
modeling. Card et al. (1983, p. 1) wrote “advances in cognitive psychology

Siau 197

and related sciences lead us to the conclusion that knowledge of human
cognitive behavior is sufficiently advanced to enable its applications in
computer science and other practical domains.” Moray (1984) also argued for
the use of knowledge accumulated in cognitive psychology to understand and
solve applied problems. Researchers in human-computer interaction have
demonstrated that such an effort is valuable and essential in building a
scientific understanding of the human factors involved in end-users interac-
tion with computers. We believe that similar effort will be useful in
information modeling and method engineering.

HUMAN INFORMATION-PROCESSING SYSTEM
To understand the representation and use of knowledge by humans, we

need to approach it from a human information-processing perspective. The
information-processing paradigm views thinking as a symbol-manipulating
process and uses computer simulation as a way to build theories of thinking
(Simon, 1979). It attempts to map the flow of information that a human is
using in a defined situation (Gagne et al., 1993) and tries to understand the
general changes of human behavior brought about by learning (Anderson
1995).

According to Newell and Simon (1972), all humans are information-
processing systems (IPS) and hence come equipped with certain common
basic features. Although some of the processes used by the system may be
performed faster or better by some than by others, the nature of the system is
the same. One of the popular and most well-known human information-
processing model is the Adaptive Control of Thought (ACT) proposed by
Anderson (1983, 1995) (see Figure 1).

Figure 1: The ACT Architecture

198 Information Modeling and Method Engineering

An ACT production system consists of three memories: working, de-
clarative, and production. Working memory contains the information that the
system can currently access, consisting of information retrieved from long-
term declarative memory as well as temporary structures deposited by
encoding processes and the action of productions (Anderson, 1983). Declara-
tive and production are long-term memory. The former is the facts and the
latter is the processes or procedures that operate on facts to solve problems.
Declarative knowledge is knowing that something is the case whereas
procedural knowledge is knowing how to do something (Gagne et al., 1993).

Encoding deposits information about the outside world into working
memory whereas performance converts commands in working memory into
behavior. The storage process can create permanent records in declarative
memory of the contents of working memory and can increase the strength of
existing records in declarative memory. The retrieval process retrieves
information from declarative memory into working memory. During the
match process, data in working memory are put into correspondence with the
conditions of productions. The execution process deposits the actions of
matched productions into working memory. The whole process of production
matching followed by execution is known as production application.

Working Memory
The working memory is activation based; it contains the activated portion

of the declarative memory plus declarative structures generated by production
firings and perception. Working memory is a temporary memory that cannot
hold data over any extended duration. Information in this memory store
decays within about 10 seconds (Murdock, 1961) unless it is rehearsed. In
addition to its limited duration, working memory is also of limited capacity.
Miller (1956) claimed that working memory holds 7± 2 units of information
while Simon (1974) claimed that it holds only about 5 units. Whatever the
actual number, the important point is that it is small. Because of its small size,
working memory is often referred to as the “bottleneck” of the human
information-processing system.

Declarative Knowledge
There are two types of long-term memory — declarative and procedural.

The long-term declarative memory is represented in the form of a semantic
net. A basic unit of declarative knowledge in the human information-
processing system is proposition and is defined as the smallest unit of
knowledge that can possess a truth value (Anderson, 1983). Complex units
of knowledge are broken down into propositions. Propositions have at least

Siau 199

Figure 2: Diagrammatic Representation of Propositions for ER Approach

two parts. The first is called the relation. Verbs and adjectives typically make
up the relations of a proposition. The second part of the proposition is called
the argument, which is determined by the nouns in the proposition. Argu-
ments are given different names depending on their role in the proposition.
Arguments may be subjects, objects, goals (destination), instruments (means),
and recipients.

The declarative knowledge for the ER approach can be represented as
propositions as shown below. Each proposition comprises a relation, fol-
lowed by a list of arguments:

(i) represent, entity, rectangle
(ii) represent, relationship, diamond
(iii) comprise, ER, entity
(iv) comprise, ER, relationship

These four propositions can be depicted diagrammatically using Kintsch’s
system as shown in Figure 2.

In ACT, individual propositions can be combined into networks of
propositions. The nodes of the propositional network stand for ideas, and the
linkages represent associations among the ideas (Anderson, 1983). Figure 3
shows the network of propositions for the ER approach.

200 Information Modeling and Method Engineering

Procedural Knowledge
 Unlike declarative knowledge, which is static, procedural knowledge is

represented in the form of productions. Each piece of knowledge is called a
production because it “produces” some bit of mental or physical behavior.
Productions are formally represented as IF-THEN contingency statements in
which the IF part of the statements contains the conditions that must exist for
the rule to be fired and the THEN part contains the action that will be executed
when the conditions are met. The productions are also known as condition-
action pairs and are very similar to the IF-THEN statement in programming
languages. For example, the following is the production rule for identifying
a relationship construct in the ER model.

IF Figure is a diamond shape
THEN Figure represents a relationship construct

Productions can be combined to form a set. A production system, or
production set, represents all of the steps in a mental or physical procedure.
The productions in the production systems are related to one another by the
goal structure. In other words, each production contributes in some way to
achieve the final goal behavior. The use of goals and subgoals in productions
creates a goal hierarchy that interrelates the productions into an organized set.
For example, Table 1 shows a production system to understand an ER
diagram.

Figure 3: Network of Propositions for ER Approach

Siau 201

__ P1
IF Goal is to understand ER diagram

THEN Set subgoal of identifying meaningful
chunks of information in ER diagram

P2 IF Subgoal is to identify meaningful chunks of
information in ER diagram

THEN Set subgoal of identifying entity in ER
diagram and set subgoal of identifying
relationship in ER diagram

P3 IF Subgoal is to identify entity in ER diagram
and symbol is a rectangle

THEN Symbol represents an entity

P4 IF Subgoal is to identify relationship in ER
diagram and symbol is a diamond

THEN Symbol represents a relationship
__

Table 1: A Production System to Understand an ER Diagram

Domain-General Versus Domain-Specific. Procedural knowledge can
be discussed from two dimensions. The first dimension refers to the degree
to which procedural knowledge is tied to a specific domain, with the anchor
points of the continuum being termed as domain-general and domain-specific
(Gagne et al,. 1993). Domain-general knowledge is knowledge that is
applicable across domains and domain-specific knowledge is specialized
because it is specific to a particular domain. The term domain refers to any
defined area of content and can vary in its breadth.

Degree of Automation. The second dimension can be labeled as “degree
of automation” with the end points of the continuum being called automated
and controlled (or conscious) (Gagne et al., 1993). An automated process or
procedure is one that consumes none or very few of the cognitive resources
of the information-processing system. Controlled process, on the other hand,
is knowledge that underlies deliberate thinking because it is under the
conscious control of the thinker.

Implication on Information Modeling and Method Engineering
Researchers develop methods, and methods can be reengineered. By

contrast, we cannot change the design of human information-processing
system. Although the human subsystem is intelligent and adaptive, we cannot
change the basic properties that define its strengths and weaknesses. If an
information model is to be easy to understand and to function as an effective
communication tool, the information modeling method must be compatible

202 Information Modeling and Method Engineering

with our information processing characteristics. It is, therefore, important for
us to consider this constraint when engineering methods and modeling
information.

 Limitation of Working Memory
The magic number 7 ± 2 has important implication on information

modeling and method engineering. Firstly, if there are more than seven
chunks of information required to be absorbed by the readers at any one time,
the working memory capacity might be exceeded which means that some
information might not be acquired. This is consistent with the recommenda-
tions by researchers and practitioners (e.g., Hawryszkiewycz, 1991) that there
should be no more than seven processes on a data flow diagram. If this is true,
some sort of leveling technique, similar to the one employed by data flow
diagram, might be needed to limit the amount of information to an information
model. Alternatively, the information model should be designed and laid out
in such a way that at any time no more than seven pieces of information need
to be processed together.

Secondly, if an information modeling method has more than seven
modeling constructs, cognitive overload might occur. For instance, it would
be difficult for a novice user to remember what each of the construct means
if there are more than seven of them. The capacity of working memory serves
as a threshold on the number of modeling constructs that can be incorporated
into a modeling method. As such, the complexity of Unified Modeling
Language (UML) and the number of different diagrams used in UML are
causes for concern.

Declarative Knowledge
Declarative knowledge deals with facts. With respect to method engi-

neering, declarative knowledge will consist of facts about the modeling
constructs - what they are and what they represent. Since declarative
knowledge is one type of long term memory, the larger the number of
constructs in a modeling method, the more time is required to learn them.
Training time is something that end-users are very reluctant to invest in. One
of the reasons for the popularity of entity-relationship (ER) and object-
oriented (OO) approaches is that a very small number of constructs is involved
and that results in their simplicity. Also, using constructs that tap into existing
declarative knowledge facilitates the transfer of knowledge and reduces the
training time. For example, many researchers and practitioners claimed that
entity-relationship and object-oriented approaches are intuitive and natural.
Although research results vary, the constructs used by entity-relationship and

Siau 203

object-oriented are undeniably simpler than a modeling method based on
algebra or predicate logic, especially from the end-users’ perspective.

Procedural Knowledge
Procedural knowledge is knowledge about how to do something. This is

one of the most problematic areas in information modeling. For example, the
most common criticism of object-oriented approach is the difficulty in
identifying objects (e.g., Wand & Woo, 1993). The fuzziness of constructs
is also a problem with entity-relationship modeling where one is often not sure
when to use relationship, attribute, or even entity to represent something in the
real world. For example, Goldstein and Storey (1990) found that users of an
automated database design tool had difficulty distinguishing between rela-
tionships and attributes. Codd (1990) wrote “one person’s entity is another
person’s relationship.” It is, therefore, vital that when engineering methods,
we need to precisely define the constructs and specify when and how to use
a construct. Saying that the world is made up of objects does not help the
analysts or the end-users in information modeling. Metamodeling, which
describes the procedural and representational aspects of modeling methods,
is a good way of documenting the procedural knowledge of a method. Forcing
method engineers to perform metamodeling ensures that they think through
and sort out the details involved in using a construct.

Domain-Specific Versus Domain-General Knowledge
Research has shown that experts in a specific domain have more and

better conceptual or functional understanding of the domain, automated basic
skills in the domain, and domain-specific problem-solving strategies. Do-
main experts, in contrast to novices, have the ability to perceive large
meaningful patterns; highly procedural and goal oriented knowledge; less
need for memory search and general processing; and specialized schema
which drive performance. The possession of domain specific knowledge,
however, is a problem during information modeling. To facilitate end-users’
understanding of information model, it is important to use intuitive constructs
that the end-users can relate to and recall easily. This has been the argument
put forth for the goodness of ER and OO approaches.

Another aspect that is related to method engineering is the advantages of
using domain-general constructs in methods. Domain-general constructs
facilitate the transfer of knowledge from one method to another. As the degree
of overlap of the modeling constructs that underlie two methods increases,
transfer also increases. Situation method, which is an information system
development method tuned to the situation of the project at hand, might be a

204 Information Modeling and Method Engineering

problem from this perspective unless it makes use of well-known and easy to
understand modeling constructs.

Degree of Automation
Working memory limitation impacts end-users much more significantly

than analysts . For analysts, the meaning of each construct is in the long term
memory, not the working memory. The knowledge has been internalized and
automated by the analysts. Automated skills require little cognitive effort and
allow the problem solver to perform necessary, routine mental operations
without thinking much about them. On the other hand, remembering what
each of the construct stands for would be a controlled process for the end-
users. They need to consciously and deliberately think about them. Con-
trolled process requires cognitive effort and is subjected to the limitation of
working memory. Thus, when engineering methods, we need to consider the
effect on end-users that are not at the automated stage in using modeling
methods and will probably never attain the automated stage. Modeling
methods, which are convoluted and highly technical, might be an excellent
tool for analysts at automatic stage but will be a poor communication vehicle
between analysts and end-users.

CONCLUSION
This research attempts to bring the wealth of knowledge in cognitive

psychology to bear on the practical problems of information modeling and
method engineering. The goal is to apply and adapt cognitive psychology
theories and techniques for information modeling and method engineering
research and help to span the gap between science and the practice of
information modeling. In this paper, we look at some cognitive psychology
theories and a popular cognitive architecture, Adaptive Control of Thoughts,
and discuss their implication on information modeling and method engineer-
ing.

ACKNOWLEDGMENT
This research is supported by a Research Grant-In-Aid funding from the

University of Nebraska-Lincoln (LWT/06-185-92501).

REFERENCES
Anderson, J. R. (1995). Learning and Memory: An Integrated Approach.

New York: John Wiley & Sons.
Anderson, J. R. (1983). The Architecture of Cognition. Cambridge, MA:

Harvard University Press.

Siau 205

Avison, D. E. and Fitzgerald, G. (1995). Information Systems Development:
Methodologies, Techniques, and Tools. (second ed.). McGraw-Hill, London.

Brinkkemper, S. (1996). Method engineering: Engineering of information
systems development methods and tools. Information & Software Tech-
nology, 38, 275-280.

Bubenko, J. A. (1986). Information systems methodologies—A research
review. In Olle, T. W., Sol, H. G. and Verrijn-Stuart, A. A. (Eds.),
Information Systems Design Methodologies: Improving the Practice,
289-318. North-Holland: Elsevier Science Publishers.

Card, S. K., Moran, T. P. and Newell, A. (1983). The Psychology of Human-
Computer Interaction. Hillsdale, NJ: Erlbaum.

Chaos. (1995). Standish Group Report on Information System Development.
http://www.standishgroup.com/chaos.html.

Chen, P. P. (1976). The entity-relationship model: Toward a unified view of
data. ACM Transactions on Database Systems, 1(1), 9-36.

Coad, P. and Yourdon, E. (1991). Object-Oriented Analysis (second edition).
Englewood Cliffs, NJ: Prentice Hall.

Codd, E. F. (1990). The Relational Model for Database Management:
Version 2. Reading, MA: Addison-Wesley.

Gagne, E. D., Yekovich, C. W. and Yekovich, F. R. (1993). The Cognitive
Psychology of School Learning. New York: Harper Colins.

Gibbs, W. (1994). Software’s chronic crisis. Scientific American, September,
86-95.

Goldstein, R. C. and Storey, V. (1990). Some findings on the intuitiveness of
entity-relationship concepts. In Lochovsky, F. H. (Ed.), Entity-Relation-
ship Approach to Database Design, 9-23. ER Institute.

Hawryszkiewycz, L. T. (1991). Introduction to Systems Analysis and Design.
(second edition). Englewood Cliffs, NJ: Prentice Hall.

Hirschheim, R. and Klein, H. K (1989). Four paradigms of information
systems development. Communications of the ACM, 32, 10.

Hutchings, A. F. and Knox, S. T. (1995). Creating products—Customers
demand. Communications of the ACM, 38(5), 72-80.

Jayaratna, N. (1994). Understanding and Evaluating Methodologies, NIMSAD:
A Systemic Framework. Maidenhead: McGraw-Hill.

Jones, C. (1986). Programming Productivity. New York: McGraw-Hill.
Kangassalo, H. (1990). Foundations of conceptual modeling: A theory

construction view. In Information Modeling and Knowledge Bases, 20-29.
Amsterdam: IOS Press.

Klein, H. K. and Lyytinen, K. (1983). The poverty of scientism in information
systems. In Mumford, E. (Eds.). Research Methods in Information Sys-
tems. North Holland: Amsterdam.

206 Information Modeling and Method Engineering

Kung, C. H. and Solvberg, A. (1986). Activity modeling and behavior
modeling. In Olle, T. W., Sol, H. G. and Verrijn-Staut, A. A. (Eds.),
Information Systems Design Methodologies: Improving the Practice, 145-
171. North-Holland: Amsterdam.

Miller, G. (1956). The magical number seven, plus or minus two: Some limits
on our capacity for processing information. Psychological Review, 63, 81-
97.

Moray, N. (1984). The usefulness of experimental psychology. In Lagerspetz,
K. and Niemi, P. (Eds.), Psychology in the 1990s, 225-235. North Holland.

Murdock, Jr., B. B. (1961). The retention of individual items. Journal of
Experimental Psychology, 62, 618-625.

Mylopoulos, J. (1992). Conceptual modeling and telos. In Loucopoulos, P.
and Zicari, R. (Eds.), Conceptual Modeling, Databases and Case, 49-68.
New York: John Wiley & Sons.

Newell, A. and Simon, H. A. (1972). Human Problem Solving. Englewood
Cliffs, NJ: Prentice Hall.

Oei, J. L. H., van Hemmen, L. J. G. T., Falkenberg, E. D. and Brinkkemper,
S. (1992). The Meta Model Hierarchy: A Framework for Information
Systems Concepts and Techniques. Katholieke Universiteit Nijmegen,
Department of Informatics, Faculty of Mathematics and Informatics,
Technical Report No. 92-17, 1-30.

Olle, T. W., Sol., H. G. and Verrijn-Stuart (1982). Information systems design
methodologies: A comparative review. Proceedings of the CRIS 82
Conference. North-Holland, Amsterdam.

Page-Jones, M. (1988). The Practical Guide to Structured Systems Design
(second edition). Englewood Cliffs, NJ: Prentice Hall.

Rolland, C. and Cauvet, C. (1992). Trends and perspectives in conceptual
modeling. In Loucopoulos, P. and Zicari, R. (Eds.), Conceptual Modeling,
Databases and Case, 27-32. New York: John Wiley & Sons.

Rush, G. (1985). A fast way to define system requirements. Computerworld,
19, 40.

Sernades, C., Fiadeiro, J., Meersman, R. and Sernadas, A. (1989). Proof-
theoretic conceptual modeling: The NIAM case study. In Falkenberg, E.
D. and Lindgreen, P. (Eds.), Information System Concepts: An In-depth
Analysis, 1-30. Elsevier Science Publishers B.V., North-Holland.

Siau, K. (1997). Using GOMS for evaluating information modeling methods.
Second CAiSE/IFIP8.1 International Workshop on Evaluation of Model-
ing Methods in Systems Analysis and Design (EMMSAD’97). Barcelona,
Spain, June 16-17, P1-P12.

Siau 207

Siau, K. (1998). Method engineering for Web information systems develop-
ment–Challenges and issues. Association for Information Systems 1998
Americas Conference (AIS’98). Maryland, USA, August 14-16, 1017-
1019.

Siau, K. (1998). The psychology of method engineering. Third CAiSE/
IFIP8.1 International Workshop on Evaluation of Modeling Methods in
Systems Analysis and Design (EMMSAD’98). Pisa, Italy, June 8-9, P1-
P12.

Siau, K. (1999). Method engineering: An empirical approach. Fourth CAiSE/
IFIP8.1 International Workshop on Evaluation of Modeling Methods in
Systems Analysis and Design (EMMSAD’99). Heidelberg, Germany, June
14-15, I1-I12.

Siau, K. and Rossi, M. (1998). Evaluating information modeling methods–
Evaluation techniques. Thirty-first Hawaii International Conference on
System Sciences (HICSS-31). Big Island of Hawaii, January 6-9, Vol. V,
312-314.

Siau, K., Wand, Y. and Benbasat, I. (1995). A psychological study on the use
of relationship concept—Some preliminary findings. Lecture Notes in
Computer Science — Advanced Information Systems Engineering, 932,
341-354.

Siau, K., Wand, Y. and Benbasat, I. (1996). Evaluating information modeling
methods—A cognitive perspective. Workshop on Evaluation of Modeling
Methods in Systems Analysis and Design. Crete, Greece, M1-M13.

Siau, K., Wand, Y. and Benbasat, I. (1997). Information modeling and
cognitive biases–An empirical study on modeling experts. Information
Systems, 22(2-3), 155-170.

Siau, K.L., Wand, Y. and Benbasat, I. (1996). When parents need not have
children—Cognitive biases in information modeling. Lecture Notes in
Computer Science—Advanced Information Systems Engineering, 1080,
402-420.

Simon, H. A. (1974). How big is a chunk? Science, 183, 482-488.
Simon, H. A. (1979). Models of Thought. New Haven, CT: Yale University

Press.
Walsham, G. (1993). Interpreting Information Systems in Organizations.

New York: John Wiley & Sons.
Wand, Y. and Weber, R. (1993). On the ontological expressiveness of

information systems analysis and design grammars. Journal of Informa-
tion Systems, 3, 217-237.

Wand, Y. and Woo, C. (1993). Object-oriented analysis—Is it really that
simple? Proceedings of the Workshop on Information Technologies and
Systems. Orlando, FL.

208 Information Modeling and Method Engineering

Willumsen, G. (1993). Conceptual modeling in IS engineering. In Executable
Conceptual Models in Information Systems Engineering, 11-21. Trondheim.

Yourdon, E. (1989). Modern Structured Analysis, 29. Englewood Cliffs,NJ:
Prentice Hall.

Raghavan 209

Chapter 14

Load-Testing of Web Site
Applications: Analysis and

Recommendations

Vijay V. Raghavan
Northern Kentucky University, USA

INTRODUCTION
The growth in e-commerce has been accompanied by an enormous need to

host robust web sites. Electronic Commerce has changed the role of Information
Technology (IT) function from its elementary business support to providing key
competitive advantages. Rapid changes in several technologies, while improving
the ability to develop and deliver web sites quickly, have also increased the complex-
ity of designing and managing them. It is easy for a consumer or business partner
to change to a different supplier if an in-house or outsourced E-Commerce site
does not perform up to expectations. Implementing an appropriate web-applica-
tion testing program is critical in an environment where barriers to switching sup-
pliers of web sites are minimal. Developing robust web sites that perform well
under varying loads can be ensured only by a rigorous testing of these web sites
before launching them in a production environment.

An ideal e-commerce application testing should enable organizations to pre-
dict, measure and improve their e-commerce solutions. Figure 1 shows a simpli-
fied e-commerce architecture. This architecture is considerably more complex
than an average client/server architecture. This architecture does not include com-
plex network details and load balancing hardware. Complexity of an E-com-
merce architecture demands application testing that is much more complex than
the testing of other types of applications. While there are different types of soft-

Previously published in Managing Information Technology in a Global Economy, edited by Mehdi
Khosrow-Pour. Copyright © 2001, Idea Group Publishing.

210 Load-Testing of Web Site Applications: Analysis and Recommendations

ware testing, this study focuses on load testing especially in the context of web site
development.

NEED FOR LOAD-TESTING
 “Slashdot Effect” refers to a web site becoming virtually unreachable after

being mentioned in another popular web site such as http://www.slashdot.org/.
Web marketing is capable of creating sudden surges of interest on web site and
sites should be designed to withstand slashdot effects. There are many types of
testing commonly used, such as usability testing, functional testing, regression test-
ing, load testing, performance testing and stress testing. Among these, load testing
can help an organization guard against slashdot effects. The focus on load testing
in this paper does not mean that other types of testing are not applicable to the e-
commerce environment. A site that can withstand loads but is hardly usable is
obviously worthless. Although other types of testing such as “usability testing” are
necessary, the present study focuses on load testing, to withstand sudden surges in
demand that are common in a web environment.

BENEFITS OF LOAD-TESTING:
Load testing can elicit information of the expected number of users an appli-

cation can support, and the time taken by an application to recover from an over-
load state. Load testing attempts to simulate real-world interactions of the site.
These interactions are then gradually loaded (increased in number) with a view to

Figure 1. A Simplified Model of E-Commerce Architecture
Databases and

Datastores from Legacy Applications

WebServers and Applications
Servers

Internet/Extranet Clients Internet/Extranet Clients

In
tr

an
et

 C
lie

nt
s

In
tr

an
et

 C
lie

nt
s Intranet C

lients
Intranet C

lients

Firewall

Raghavan 211

analyze the system under varying loads to elicit the cutoff point at which the per-
formance becomes unacceptable. Rosenberg and Hyatt (1997) have highlighted
the guidelines for developing a successful metrics program that can be applied to
a load-testing context. As an example, the Goal/Question/Metric (GQM) para-
digm provides a framework for characterization, planning, construction, analysis,
learning and feedback. GQM paradigm consists of three steps: generating a set of
goals, derive a set of question and develop a set of metrics (Basil & Rambach
1988).

METRICS FOR A LOAD-TESTING PROGRAM
The model proposes criteria for developing a metrics program for load-test-

ing web site applications. Each criterion and its relevance to implementation in
web site applications are discussed.

Support for Operational Environments: To be accurate, a load-testing
tool must support all operational environments that are commonly used in web
site. The load testing tool must support these even if they are not currently used in
a given web site design. Some of the operational environment differences could be
in client browsers, protocols used, scripting languages and so on. A full verifica-
tion strategy is effective if it is (a) efficient — load tests can take days — (b) not
prone to “false positives” — that is, reporting an error over less-meaningful dy-
namic content — and (c) configurable.

Database Connections: A production web site almost invariable involves
retrieval of data from one or more database. Connecting to the database often
involves use of ODBC drivers or other software developed outside of the focal
organization. A testing plan must hence include the performance of this software
under varying load conditions. For example, proprietary software may have num-
ber of user restriction that may not be readily apparent during the development
stage.

A much desired capability is for a test tool to generate a test plan automati-
cally based on available data (from server logs to usage patterns, geographic
access patterns to domain access logs). No testing tool does this today (with the
singular exception of Microsoft, whose free Web Application Stress Tool can
generate stress testing from IIS Server logs. Users, as they struggle with ever
more complex and large sites, have been crying out for greater site-mapping ca-
pabilities in a testing tool. While the vendors have made strides in manageability,
developing the test plans and procedures is still a very manual and time-consuming
process.

Analysis/Reporting: E-commerce sites within an organization are highly vis-
ible. Hence, the ability to generate meaningful reports quickly is important. A
Load testing program must convince managers that a web site can generate accu-

212 Load-Testing of Web Site Applications: Analysis and Recommendations

rate and timely reports. The ability of a web site application to generate real time
reports must be tested under actual load conditions. For less important reports,
Real-time monitoring of report generation at later stages of a site’s life cycle may
be acceptable.

Breadth: A load-testing program must be broad. This breadth refers to the
number of different protocols, application server vendors, languages, and client/
server integration — the width of Figure 1 — which are supported by a testing
program. Benefits of analyzing on HTTP requests and responses and API-level
recording by accessing Windows API or Windows messaging traffic must be
clearly evaluated.

Depth: Referring back to Figure 1, depth covers how well a testing program
addresses concerns moving from the top of the figure to the bottom. If a given
request from a web site application takes x seconds to process, how much of it is
spent in different components of Figure1. Breaking down the total time taken for
requests to different components of the architectures is critical to implementing a
successful load-testing program.

Life-Cycle Support: This criterion addresses how well the testing programs
and tools are integrated with functional and regression testing methods and per-
formance monitoring methods being used in an organization. Testing does not
occur in a vacuum. Support for other parts of development process and tracking
of defects become critical for ensuring application reliability. A load-testing plan
must work well with other test plan that are currently implemented or being con-
templated.

RECOMMENDATIONS
It is critical for organizations deploying web sites to develop a load-testing

plan that includes all aspects of site development. Since return on investment (ROI)
calculations can be difficult for any test plan, organizations should assume that the
costs of implementing a valid testing tool program as a necessary cost of business
in the e-commerce space. While the costs of these testing programs can be high,
an organization can expect that these costs to be offset by reduced costs of train-
ing and maintenance and increased gains by deploying a web site that is fully
functional.

REFERENCES
Basil, V. and Rambach H. (1988). The TAME Project: Towards Improvement-

Oriented Software Environments. University of Maryland, UMIACS-TR-
88-8.

Beizer, B. (1995) Black-Box Testing : Techniques for Functional Testing of
Software and Systems. New York: John Wiley & Sons.

Raghavan 213

Hetzel, W. (1993). The Complete Guide to Software Testing (second edition).
New York: John Wiley & Sons.

Kaner, C. and Falk, J. (1993) Coriolis group. Testing Computer Software
(second edition).

Kit, E. and Finzi, S. (1995). Software Testing in the Real World. Reading, MA:
Addison Wesley.

Myers, G. J. (1979). Art of Software Testing. New York: John Wiley & Sons.
Rosenberg, L., Hammer, T. and Shaw, J. (1998). Software metrics and reliability.

9th International Symposium on Software Reliability Engineering, Ger-
many, November. The paper is available at http://satc.gsfc.nasa.gov/support/
ISSRE_NOV98/software metrics and_reliability.PDF.

Rosenberg, L. and Hyatt, L. (1997). Developing a successful metrics program.
International Conference on Software Engineering, San Francisco, CA.

Rubin, J. (1994). Handbook of Usability Testing: How to Plan, Design, and
Conduct Effective Tests (Wiley Technical Communication Library). New York:
John Wiley & Sons.

214 Component-Based ERP Design in a Distributed Object Environment

Chapter 15

Component-based ERP Design in
a Distributed Object Environment

Bonn-Oh Kim
Seattle University, USA

Ted Lee
Memphis State University, USA

ERP (Enterprise Resource Planning) vendors have seen a dramatic increase
in their sales this decade. Even though several vendors are producing great
products and making huge profits, there are some problems to be resolved to
make ERP applications a continuous success in the next decades. Current
ERP applications have the low reusability and interchangeability of various
modules among different vendors’ packages. One of the main reasons for
these shortfalls is a tight coupling of ERP domain knowledge with the
particular implementation tools. Also, efforts in establishing and using the
standards in specifications of ERP applications have been inconsequential.
In this article, strategic steps to wield a dominant power in the future ERP
market are discussed. These steps are as follows: 1. Knowledge Modeling:
Abstraction of Domain Knowledge from Tools; 2. Componentization of
Domain Knowledge; 3. Implementation of Componentized Domain
Knowledge; 4. Marketing Strategies for Domain Knowledge Components.

INTRODUCTION
Since the early 1990s, a notion of business reengineering has been very popu-

lar in many companies, especially in the USA. One of the contributions of busi-
ness reengineering is that corporate information systems should be viewed as an
enabler to transform the business processes and consequently organizational struc-

Previously published in Challenges of Information Technology Management in the 21st Century, edited
by Mehdi Khosrow-Pour. Copyright © 2000, Idea Group Publishing.

Kim & Lee 215

tures. To fulfill the mission of an enabler of business transformation, corporate
executives found that corporate information systems should be planned, designed
and implemented from an enterprise-wide perspective. A collection of islands of
software located in various divisions of an organization could not satisfy the new
needs of large corporations.

To deliver an integrated set of software systems for various functions of a
company, including accounting, manufacturing, logistics and others. Recently, ERP
vendors such as SAP, Baan, PeopleSoft, Oracle and J. D. Edwards have seen
their sales growing exponentially. Behind the successful stories of ERP, however,
there are several issues to be dealt with in order to adapt to the ever-changing
computing environment and maintain the competitive advantages.

Borrowing the idea from the industrial manufacturing, software components
built based on standard specifications can be a building block for resolving the
current problems in designing ERP applications. To build software components,
however, we need to have a set of specifications at the knowledge level. In this
article, knowledge modeling abstracted from the implementation tools is discussed
as a precursor for building the components for ERP applications after the prob-
lems of current ERP applications are discussed and core competencies of ERP
vendors are reviewed from a perspective of overall computing architectures.

PROBLEMS OF CURRENT ERP DESIGN
Currently, each ERP vendor has been developing its own proprietary systems

in various domain areas. Since ERP customers prefer the seamless systems across
their business functions, ERP vendors are continuously expanding into new do-
main areas. However, one vendor does not necessarily produce superior ERP
packages across all business functions. Each vendor maintains superiority in some
functional domains, e.g., PeopleSoft for human resource management.

From a perspective of ERP customers, they have to opt for using all ERP
applications primarily from one vendor or selecting many packages from different
vendors. If customers can choose the best from different ERP vendors without
worrying about the compatibility among different vendors’ ERP packages, they
can maximize the productivity gains by installing the best ERP applications in their
organization. From an ERP vendor’s perspective, it is very difficult to specialize in
any particular domain functions (e.g., manufacturing, financials, etc.) because many
customers want a smorgasbord of ERP packages from one vendor. If ERP pack-
ages from different vendors are interchangeable or compatible, some problems
aforementioned can be somewhat resolved.

There have been overlaps in efforts developing virtually the same type of appli-
cations (e.g., accounting packages) by many different vendors. Reinventing a
wheel is a last thing we need to do. Current ERP designs in industry lack the

216 Component-Based ERP Design in a Distributed Object Environment

reusability and interchangeability of domain application components. To develop
a successful and dominant company in the ERP market, a strategic move to a
component-based ERP design and marketing will be required. ERP vendors
should be in a business of specifying the ERP components as well as building
them. Once the design of specifications for ERP components is produced, manu-
facturing of each component can be outsourced to third-party developers.

CORE COMPETENCIES OF ERP VENDORS
Currently, ERP vendors’ core competency appears to reside in its

conceptualizations of application domain knowledge in financials, manufacturing,
distribution and others rather than the application development tools (e.g.,
OneWorld from J. D. Edwards). Even though they are making profits by selling
the ERP software on different machines, there will be even more profitable and
huge markets for specifying and producing various components of each applica-
tion. Readers are reminded that automobile companies make huge profits speci-
fying and selling the automobile parts (or components). For example, GM con-
trols an automobile business by specifying how the third-party manufacturers pro-
duce the parts for GM cars and trucks. Controlling the standards for specifica-
tions of parts endows an intrinsic dominant power to GM. GM does not produce
all the parts. GM basically controls the specifications of parts.

By breaking down a huge complex application package into many indepen-
dently packaged components, we can sell each component to all types of custom-
ers. Customers of ERP products do not have to be a mid-sized company wishing
to have the financial applications installed. We can expand the market to software
developers and end-users as well as our traditional mid- to large-sized compa-
nies. For example, if we package the accounts receivable application as a sepa-
rate independent product using DCOM (Distributed Component Object Model)
standard in Microsoft Windows 98/NT environment, potential profits could be
immense.

COMPONENT-BASED ERP DESIGN
What is important is that we need to rethink how we develop the applications.

Software design should be more or less like designing and manufacturing automo-
biles. GM and Ford make money by specifying components and assembling cars
as well as by manufacturing parts. ERP vendors should be prepared to design
and sell components of applications as well as the final whole ERP solution. Pack-
aging of each component needs to be done using the industry standards. Once we
conceptualize and build each component, we can package it using Microsoft
DCOM, OMG’s (Object Management Group) CORBA (Common Object Re-

Kim & Lee 217

quest Broker Architecture), SUN’s JavaBeans or whatever. ERP vendors are
not in a business of setting the standards for packaging. Their strength should be
in conceptualization and specification of components and packaging them in vari-
ous forms.

Currently, most of conceptualizations of knowledge in application domains are
already available in the forms of computer code and some high level designs.
Unfortunately, however, they are frequently hidden and dormant. They are tightly
coupled with the tools (e.g., OneWorld). What we need to do is to abstract the
knowledge from the tools and specify each knowledge component independently
of any tools. Then, each knowledge component can be manufactured using what-
ever tools in a massively distributed environment. Thereby, we can give a new
profitable life to this latent asset of ERP vendors. We need to recreate and re-
package the knowledge. For effective packaging and distribution, it is very im-
portant to adopt a distributed object-oriented approach in software development
and to normalize the database systems.

More specifically, the following needs to be done:

1. Knowledge Modeling: Abstraction of Domain Knowledge from Tools:
When designing software systems, we need to think about what is constantly

changing and what is not. Invariant parts of the system should be separated from
the variant parts in order to make a whole system adaptable to a new environ-
ment. In the ERP market, the domain knowledge in accounting or manufacturing
does not change much over time while implementation tools are almost constantly
changing. When there are new implementation tools available, the domain knowl-
edge should be easily ported to a new tool environment.

Domain Knowledge

Independence

Implementation Tools

Independence

Middleware &OS

Independence

Hardware

Figure 1: Multiple Levels of ERP

218 Component-Based ERP Design in a Distributed Object Environment

As shown in Figure 1, knowledge models in various domains should be inde-
pendent of any lower-level abstractions, including implementation tools, middle-
ware and others. Knowledge modeling has been a research topic in artificial
intelligence for a long time and there are many models available now. For the ERP
knowledge, however, two modeling tools can be most effective: i.e., object-ori-
ented modeling for business activities and entity-relationship modeling for persis-
tent data. These object models and entity-relationship models should be indepen-
dent of any particular tools or technical environment. Depending on a market
situation, we should be able to implement the knowledge models in almost any
programming language and hardware environment.

2. Componentization of Domain Knowledge
One of the most important characteristics of components is the separation of

“what” from “how”. Each component should have a clearly defined interface
specifying “what” it does while hiding “how” it does. Using this interface, each
component can communicate with other components. A collection of objects will
constitute a various grain size of knowledge in each domain application as patterns
or frameworks of objects. IBM’s San Francisco project can provide a good
reference model. For more details, visit the following Web site: http://
www.ibm.com/Java/Sanfrancisco/.

3. Implementation of Componentized Domain Knowledge
As we have seen over many years, technical environments are changing at a

very fast speed. ERP vendors should not be in the component packaging busi-
ness. Currently, there are several packaging standards available, including
Microsoft’s DCOM (Distributed Component Object Model), OMG’s (Object
Management Group) CORBA (Common Object Request Broker Architecture)
or SUN’s JavaBeans. Knowledge components specified should be packaged
using whatever standards popular. If we design and specify the domain knowl-
edge independently of any particular packaging standard, we should be able to
repackage the domain knowledge components as dictated by the market.

4. Marketing Strategies for Domain Knowledge Components
To become and stay a dominant power in the ERP market, an ERP vendor

needs to control and own the standards for ERP components and allow others to
manufacture the approved components. Open Applications Group’s work can be
a good place to see what is going on in the area of open standards. For more
details, readers are referred to the following Web site: http://
www.openapplications.org/. Microsoft practically controls the microcomputer
market by owning a standard in the operating systems while many other compa-

Kim & Lee 219

nies build software based on Microsoft’s standard. Each ERP vendor does not
have to manufacture all the components.

Once an ERP vendor possesses the standards, it should be an owner of com-
ponents catalogue. The catalogue of ERP components should be a market place
where software builders can shop to build or customize their own applications. it
should be more than just a component builder. We should create and control the
market for ERP components. Readers are reminded that NYSE (New York
Stock Exchange) has become a very profitable venture by creating a market for
stock exchanges and by controlling how stocks should be exchanged. We should
be able to set the rules for building and exchanging components in the ERP mar-
ket. Thereby, we can dominate the ERP market for a long time.

CONCLUDING REMARKS
As in the industrial sectors of the USA economy, there will be more profits in

specifying and designing software packages rather than just manufacturing them
even in the software business in the near future. These days, manufacturing of
software can be achieved less costly by exporting it to countries like India. In the
ERP market, we need to think more like Nike. Designing Nike shoes is a lot more
profitable than just manufacturing them. Activities involved in designing the speci-
fications for the ERP components are quite distinct from manufacturing them. Once
an ERP vendor controls the knowledge component specifications for the ERP
domains, it can be in a strategic position to dominate the ERP market with an
absolute competitive advantage in the 21st century.

220 Heterogeneous Information Management Systems

Chapter 16

Knowledge and Object-Oriented
Approach for Interoperability of

Heterogeneous Information
Management Systems

Chin-Wan Chung and Chang-Ryong Kim
Korea Advanced Institute of Science and Technology, Korea

Son Dao
Hughes Research Laboratories, USA

For the interoperability of heterogeneous information management systems,
schema mapping approaches have been used to build a unified view. The
schema mapping approach offers full transparencies and is very powerful
from the user’s point of view. However, the traditional mapping approach
needs to be strengthened for information management systems that have non-
traditional data types, no schema, or incompatible schemas. We have
incorporated numerous concepts and constructs associated with the knowledge
and object-oriented paradigm such as abstract views with a set of procedures,
encapsulation, inheritance and class composition hierarchies to resolve the
above problem. This extension also accommodates the ability to determine
and explicitly represent the semantics in the schema. Additionally, we have
outlined a query processing method using the unified view. We are currently
developing a prototype to support seamless access to structured data and
unstructured data managed by different information management systems.

Previously published in the Journal of Database Management, vol.10, no.3, Copyright © 1999, Idea Group
Publishing.

Chung, Kim & Dao 221

The information of a large organization is distributed across diverse
information management systems. The diversity is mainly caused by the
difference of requirements of applications, the advances in information
management technologies, the ad hoc historical development of systems, and
evolution of systems in organizations. Therefore, it is unlikely that the
diversity will diminish. The interoperability of heterogeneous information
management systems is necessary to provide the sharing of an organization’s
information.

In past years, several projects have been developed to address the
interoperability. Their approaches, federated or schema mapping approach,
centered around the ability to define a unified view and to support translation
to/from local schemas (Chung, 1990; Dao et al., 1987; Garcia-Solaco et al.,
1995; Thomas, 1990). The schema integration process for building this
unified view is a very critical process in the federated approach.

The federated approach using the relational data model as a common data
model offers full data distribution transparency and is very powerful from the
user’s point of view. But this approach is limited with respect to information
management systems that have no schema or incompatible schema models
(e.g., file systems, text, spatial, geographical information systems).

In the federated approach, a common data model is needed to represent
the unified view. Several research projects suggest the use of relational,
semantic, entity-relationship (ER)/extended ER, and object-oriented data
models, etc, for the common data model.

Databases offer facilities for managing large amounts of data, but are
limited in their expression and structuring facilities; while object-oriented
programming languages provide features for expressing and structuring
complex entities (through data abstraction, encapsulation, and inheritance).
The object-oriented data model incorporates ideas from the semantic data
model and the object-oriented programming language. Semantic data model-
ing offers richer types of relationships (i.e. aggregation and groupings),
whereas the object-oriented language encapsulates behavioral aspects of
objects. The object-oriented data model is currently implemented in several
object-oriented database management systems (OODBMS) (Butterworth,
1991; Deux, 1991; Kim et al., 1990; Lamb et al., 1991; Soloviev, 1992).

Our approach is to use advanced modeling concepts (i.e. a semantic data
model, knowledge representation) in an object-oriented paradigm to form a
common data model. The goal of the model is to provide flexible features to
resolve data structure incompatibilities of underlying data models, interrela-
tionships of objects at different locations during schema integration, and the
semantics required by different applications.

222 Heterogeneous Information Management Systems

Using the common model, a unified view can be built from local schemas
through schema integration. Once a unified view is provided, users can
develop applications which access data objects in the unified view. This
access will be translated to an access to local data.

The use of object-oriented techniques has already been presented in other
papers (Ahmed et al., 1991; Bertino et al., 1989). While we use a federated
approach, (Ahmed et al., 1991; Bertino et al., 1989) used a multidatabase
approach. In a multidatabase approach, a common data model is selected, then
local schemas for local databases are imported to the location(s) which uses
the common data model. The imported schemas are translated to schemas in
the common data model to provide a uniform interface; however, the schemas
are not integrated. Therefore, the multidatabase approach does not require a
unified view. On the other hand, the approach does not support the data
distribution transparency. The approach in (Bertino et al., 1989) is based on
the operational mapping which consists of defining the correspondence
between operations at different levels. Our approach is based mainly on the
structural mapping and somewhat on the operational mapping. The formation
of a query utilizes the structure and the message sending to an object utilizes
the operation.

Non-object-oriented approaches (traditional approaches) use data mod-
els other than the OO data model as a common data model. As mentioned
earlier, the object-oriented data model combines the features of the semantic
data model and the object-oriented programming language. The OO data
model is a superset of other data models. Therefore, other data models cannot
effectively represent some of the features of the OO data model such as
multimedia data types and methods. Consequently, it is difficult to interface
the OODBMS using a non-object-oriented approach. We use a federated and
object-oriented approach to support the transparency of the locations of
diverse databases including object-oriented databases.

From the above discussions, we observe that there are needs for a new
approach for an effective interoperability, and they are the motivations of our
research as follows:
• It is necessary to provide the interoperability among information manage-

ment systems that have non-traditional data types or incompatible schemas.
• In any case, the users should not be responsible for finding the locations of

necessary data. The system should support the data distribution transpar-
ency.

• In the past, only the feasibility of the interoperability was considered.
However, an environment to achieve interoperability without much diffi-
culty must be provided.

Chung, Kim & Dao 223

The initial local DBMSs to be interfaced are the relational DBMS, the
object-oriented DBMS, and the hierarchical DBMS. Recently, use of the
relational DBMS has been wide-spread, while the object-oriented DBMS is
suitable for engineering and manufacturing applications. An interface to the
hierarchical DBMS IMS in a heterogeneous database environment is impor-
tant because IMS has been the most heavily used mainframe DBMS in large
organizations. The interoperability of these three major types of DBMSs
covers many important issues and it will be the basis for future expansion.

The remainder of this paper is organized as follows: The common data
model is presented in the next section. The following section describes the
interface between the object-oriented database and the relational database,
and the subsequent section briefly explains the interface to the hierarchical
database. The architecture of a prototype is described in the following section.
A comprehensive example is given in the next section.

INTEGRATED KNOWLEDGE-OBJECT-ORIENTED
DATA MODEL

A common data model is required to support the integration of multiple
databases. Extensibility and flexibility features are the major advantages of
the OO data model as a common data model compared with other data models.
Although the OO data model provides basic features for general require-
ments, specific features need to be added to effectively support different areas
of applications. In particular, since we are concerned with the integration of
heterogeneous databases, our approach is to consider the structures and
representations of objects tightly coupled with the operations that one may
want to use on them. Thus, we propose to start with the OO data model to
support general concepts. We then extend the concepts to support more
specific issues such as query decomposition, data distribution, and translation
of queries and responses. The result is a model that merges OO concepts with
special extensions to access heterogeneous databases. This model is called an
Integrated Knowledge-Object-Oriented Data Model (IKOODM) and it can be
implemented using an OODBMS.

In other words, IKOODM is an extension of the OO data model, and it
provides constructs necessary to build a unified view, using basic features of
the OO data model. The point is that by including frequently used features in
IKOODM, the features are supported in the system level rather than the
application level. Thus, many users can share available IKOODM features
without having to redundantly develop the same features using OODBMS
features directly.

224 Heterogeneous Information Management Systems

IKOODM Core Modeling Elements
The core model consists of objects, classes and relationships.
(1) Object
Objects represent instances of entities modeled in a database, or real

world concepts perceived by applications. The uniform treatment of instances
of any real world entity as an object simplifies the user’s view of the real
world. Objects can be created, updated and deleted dynamically. Moreover,
the interaction between objects is supported through message passing.

(2) Class
The class is a major data abstraction in IKOODM. Instances of classes are

objects. Objects with similar attributes and event structures are grouped into
a class. A class definition is also stored as an object, called a class-object. In
IKOODM, there are two types of classes: base class and abstract class. A base
class has the same meaning as a class in the object-oriented paradigm;
therefore, it has stored instances.

A base class is used to represent a local data object (e.g., a relation in a
relational database) and the data access path created during schema integra-
tion. The access path represents the relationship between the instances of two
entities. The relationship enables the access to instances of one entity from
instances of the other entity. For instance, there is an access path between the
department entity and the employee entity because each employee is a
member of a department. (See the next section for further discussions and an
example.)

An abstract class is used to represent a high level abstraction to describe
the unified view during schema integration. An abstract class is derived based
upon the methods supported by the system or the applications. The system-
methods include semantic model concepts such as generalization and special-
ization. An abstract class is analogous to a view. A relational view (currently,
a view is well-defined in a relational database) is limited to the expressiveness
of the query language SQL. Meanwhile, the term abstract class is used to
emphasize that the methods used to derive an abstract class can be expressed
in any declarative or procedural languages and that an abstract class can
contain methods and information for using the class.

The class is defined as follows:
DEFINE CLASS <class name>
 Internal Structure:
 <attribute 1>, <attribute 2>, ...,<attribute n>
 Semantic Link:
 To-class:

Chung, Kim & Dao 225

 Declaration methods:
 <generalization, specialization, binary
 association or user-defined methods>
 Derivation Structure:
 Constraints:
 Data distribution:
 Manipulation methods:

Internal Structure describes the property of a class. Semantic Link
represents the semantic relationship from this class to other classes. To-class
specifies one or a list of destination classes. Declaration methods are used to
create the class and its relationships to other classes during schema integra-
tion. Derivation Structure provides information necessary to use this class
during query processing. Manipulation methods are used to process queries
referencing the class.

The role of Declaration methods is to represent the relationship between
a class and other classes, whereas Manipulation methods are the main features
to capture and specify behavior of a class in the model. Whenever a class is
referenced in a query, Manipulation methods in the class make necessary
transformations of the query.

Example: Suppose a student class is a generalization of undergrad-
student and grad-student relations which are stored at different locations.
DEFINE CLASS student
Internal Structure:
 <name>, ...
 Semantic Link:
 To-class: grad-student, undergrad-student
 Declaration method: Generalization (grad-
 student, undergrad-student)
 Derivation Structure:
 Manipulation method:
 Generalization-Decomposition (student)
 Data distribution: {grad-student is
 fragmented at Site 1 in DBMS x,
 undergrad-student is fragmented at
 Site 2 in DBMS y}

 (3) Relationship
Semantic links are used to describe relationships among classes. We have

extended the basic generalization abstraction used in conventional OO
paradigm to support data distribution relationships (e.g., horizontal and
vertical fragmentations). In addition to conventional OO methods for gener-

226 Heterogeneous Information Management Systems

alization, specific methods will be provided to support the definition of a
unified view and the access to multiple databases. For each type of relation-
ship, a pair of methods is required: declaration methods and manipulation
methods.

Any types of relationships can be specified by providing appropriate
declaration methods. A manipulation method associated with a relationship
defines steps to simplify a query using the relationship. These methods are
stored in a high-level class and inherited to appropriate classes in IKOODM.
Therefore, once the methods are defined, they are supported by the model.
These methods are class methods which operate on class-objects in contrast
to instance methods which operate on objects. For instance, in the above
example, Manipulation method Generalization-Decomposition takes the
query referencing the student class and decomposes the query into two
subqueries, one referencing the grad-student class and the other the undergrad-
student class. The method does not operate on a specific student object.

The declaration and manipulation methods are similar to the data
definition language and the data manipulation language in the conventional
DBMS. The difference is that the methods can be expressed either declara-
tively or procedurally. In addition, since codes defined as methods in classes
are used by the system or applications, modularization and reusability of
codes are promoted.

We describe a few relationships that are very useful and powerful for
integrating multiple databases. The generalization and the specialization can
be used to represent horizontal and vertical fragmentations. These relation-
ships induce the inheritance property. That is, the inheritance (ISA relation-
ship) describes the relationship between a class and the class generalized (or
specialized) from it. The binary association describes the accessibility rela-
tionship between two classes.

Generalization
Generalization allows the creation of abstract classes through the projec-

tion and union of existing base or abstract classes.
Declaration Methods:
GC = Generalization [C1, C2, ..., Cn]: the new class GC consists of

instances that are in C1, C2, ..., or Cn. That is, generalization is the union of
disjoint classes, e.g., student = Generalization [grad-student, undergrad-
student]. The new class GC inherits the common attributes of C1, C2, ..., and
Cn.

Manipulation Methods:
Q = Generalization-Decomposition [GC]: Q is a set of subqueries, of a

Chung, Kim & Dao 227

query referencing GC, returned by the decomposition of the generalization
class GC.

Horizontal Fragmentation:
Besides creating a high level of abstraction corresponding to the real

world concept, generalization is used to represent the horizontal fragmenta-
tion in a distributed database environment. For example, grad-student is
physically stored in a database at a location different from undergrad-student.
In this case, generalization is used to provide data distribution transparency.

Specialization
Declaration Methods:
SC = Single-specialization [C1, <restricted attributes>,<predicate>]: the

new class SC contains restricted attributes of C1, and SC consists of instances
that satisfy the predicate on some of the restricted attributes. For example,
grad-compsc-resume = Single-specialization [grad-student, <name, grade,
dept, experience>, <grad-student (dept = ‘computer science’)>]. SC2 =
Group-specialization [C1, C2, ..., Cn, <common restricted attributes>, <predi-
cate>]: the new class SC2 contains common restricted attributes and it
consists of instances that satisfy the predicate on some of the restricted
attributes. For example, work-study = Group-specialization [employee, stu-
dent, <name, ID, status>, <employee (status = 2) and student (status = 2)>].

Manipulation Methods:
Q = Specialization-Decomposition [SC or SC2]: Q is a set of subqueries,

of a query referencing SC or SC2, returned by the decomposition of SC or
SC2.

Vertical Fragmentation:
Single-specialization and Group-specialization can be used to represent

a unified view to represent the vertical fragmentation of different base classes
that have common attributes and that are physically distributed in different
locations.

Binary Association
This relationship describes the access path between two classes.
Declaration Methods:
Association [C1, C2]: C1 and C2 are the two classes that will be

associated with each other iff there is an access path between C1 and C2. The
identification and modeling of the access path is explained in the next section.

Manipulation Methods:
Q = Association-Decomposition [C1, C2]: if C1 and C2 are at different

locations or under different DBMSs, Q is a set of two subqueries, of a query
referencing C1 and C2, one referencing C1and the other C2.

228 Heterogeneous Information Management Systems

IKOODM Structure
For resolving semantic heterogeneities and supporting access to dispar-

ate data sources, we extend the core model into a multi-layered model that
supports different levels of abstractions: enterprise semantics, data structures,
and object storage. This is illustrated in Figure 4.

(1) Object Storage Layer
The base class can be stored and managed by a relational, object-oriented,

hierarchical, image database system or file system. The object storage layer
is composed of different classes, one for each type of DBMS, and their
subclasses, one for each DBMS. Each class provides the necessary methods
to transform between different structure representations, and to interface with
the underlying systems. The methods will be transferred permanently and
executed at the appropriate local site.

For example, a relational class is composed of a set of common methods
that are used to transform a query to a relational query in SQL, and its subclass
is composed of a set of specialized methods for interfacing a different DBMS
(e.g., Sybase, Oracle, DB2, Ingres). In this example, the set of common
methods for the relational class can be reused to interface any relational
DBMS which uses SQL. The set of common methods consists of programs
which translate queries in an OO query language into queries in a standard
SQL such as ANSI SQL2. SQL2 has large intersections with SQL variants
used by popular relational DBMSs. The methods in a subclass of the relational
class (a subclass for a specific relational DBMS) translate the features of the
standard SQL into those of the variant of SQL used by the relational DBMS.

(2) Data Structure Layer
This layer is composed of all the base classes that are supported in the

unified view. The mapping information and methods that resolve the data
access path from one base class to another are captured in this layer. Class
objects in this layer send a request to an appropriate class in the object storage
layer to receive the data content. This layer provides the data management
system independent capabilities for a wide variety of systems supported by the
object storage layer.

(3) Enterprise Semantic Layer
This level of abstraction captures the semantic relationship of different

applications/users’ views of the underlying data. The enterprise semantic
layer consists of abstract classes which are derived from the base classes in the
data structure layer or from the abstract classes in this layer. The semantics are
derived based on the interrelationships among the underlying schemas
coupled with the integrity constraints of an enterprise that the users are trying
to model. The enterprise semantics are built during schema integration. The

Chung, Kim & Dao 229

declaration and manipulation methods described previously are used to create
and manipulate the unified views and their relationships. Moreover, the users
can specify other model concepts required by their applications and provide
their own methods. In general, this layer allows us to express such knowledge
declaratively instead of embedding it in procedural codes.

In general, the use of the class hierarchy and the method to support
IKOODM layer structure will greatly enhance the modularity and reusability
of the software as shown in the example in (1) Object Storage Layer of this
subsection. The reusability here only refers to sharing the source code of the
method because the object code will be different for different types of
computers on which the method is to be reused. The source code in a language
can be reused when compilers for the language are available on different
computers. For example, C++ language programs are widely used on different
computers. The parts of a program related to I/O require modifications.
However, there are many routines in distributed database software that
contain little or no I/O related parts, such as routines for distributed query
decomposition and query translation. Once the method is compiled for a target
computer, it is possible to invoke the compiled method that are not linked with
the main process using dynamic loading and linking techniques supported by
some operating systems such as UNIX.

The Advantages of IKOODM
In this subsection, we summarize the advantages of IKOODM compared

with existing approaches.
(1) The interoperability is extended to diverse information management

systems by taking an object-oriented approach.
Previously, the relational data model has been successfully used as a

common data model to integrate traditional information management systems
such as relational database systems, network database systems, and hierarchi-
cal database systems. However, a relational approach is not appropriate for
incorporating information management systems that have non-traditional
data types (e.g., image, video, text) or incompatible schemas.

The OO data model provides multimedia data types; therefore, images or
videos in local information systems can be modeled using corresponding
multimedia data types in the common OO data model. Furthermore, the
methods associated with multimedia data types can be used for the presenta-
tion of the multimedia data transferred from local information systems. This
is an important aspect because the user interacts only with the global user
interface and the common schema in a heterogeneous information manage-
ment system environment.

230 Heterogeneous Information Management Systems

While the traditional data models are compatible enough to be mapped
to the relational data model, the OO data model is incompatible with the
traditional data models because the OO data model captures the behavior in
addition to the structure. Since the information content of the OO data model
is a superset of the relational model, the relational approach cannot provide
the interoperability when an OO database system is included.

(2) The data distribution transparency is supported by using a federated
approach.

The past researches that proposed an object-oriented approach used a
multidatabase approach. Although the local schemas are translated to schemas
in the common data model, they are not integrated in multidatabase approach
(Litwin et al., 1990). Consequently, the multidatabase approach does not
support the data distribution transparency.

(3) An environment which reduces the difficulty of achieving
interoperability is provided by extending the OO data model.

IKOODM is structured in three layers, and incorporates specific methods
in the classes in the layers in order to facilitate efficient development of system
software for managing heterogeneous databases as well as construction of a
unified view.

The system software can be well modularized and structured. As shown
in Figure 4, a method in a class in the enterprise layer decomposes a query
referencing the class into queries referencing classes in the data structure
layer. Then, a method in a class in the data structure layer further decomposes
subqueries by locations. Finally, methods in the object storage layer translate
a subquery in two steps; the first step translates the subquery into a query
language of the target data model, and the second step adds specifics of the
target DBMS.

The unified view can be constructed utilizing the methods for schema
integration such as generalization and specialization. In addition, the knowl-
edge in the enterprise semantic layer can be used for the construction and the
update of the unified view. The knowledge includes the integrity constraint,
attribute relationships, and schema interrelationships, and it can be expressed
declaratively.

INTERFACE BETWEEN OBJECT-ORIENTED
DATABASES AND RELATIONAL DATABASES

A unified view of the databases needs to be provided to users and
applications to support a location and structure transparent access to distrib-
uted object-oriented (OO) databases and relational databases. We use IKOODM

Chung, Kim & Dao 231

to provide a unified view of OO databases and relational databases. In fact,
there are OO data model primitives which can be used as IKOODM features
for constructing the data structure layer in a unified view.

Since the schema translation and integration are essential processes for
providing a unified view of heterogeneous databases, we will focus on the
schema translation and integration. A major ingredient of the schema integra-
tion is the modeling of access paths. An access from instances of an entity to
instances of another entity can be made when there is a relationship between
instances of the two entities.

In the OO data model, the class composition hierarchy (or part-of
hierarchy) (Kim et al., 1990) is used when the domain of an attribute in a class
is another user-defined class. Such an attribute is called a composite attribute.
For example, suppose an EMPLOYEE class includes attributes DEPT and
AGE with domain classes DEPARTMENT and INTEGER, respectively. The
domain of AGE is a system-defined class INTEGER consisting of a set of
integers, whereas the domain of DEPT is a user-defined class DEPART-
MENT consisting of a set of department objects. In this case, DEPT is a
composite attribute and there is a class composition hierarchy, between
EMPLOYEE and DEPARTMENT, which specifies an assignment relation-
ship between employee objects and department objects. Therefore, the class
composition hierarchy (CC-hierarchy) represents the relationship between
the instances (i.e., objects) of two classes. Depending on the numbers of
objects of one class related to objects of the other class, the relationship
between the classes may be one-to-one, one-to-many, or many-to-many. We
use the CC-hierarchy to model the access path.

While the CC-hierarchy is an explicit structure, the access path can also
be modeled using a behavior of an object that returns objects of a different
class. However, in order to implement the behavior of an object to access other
objects, the access request must be known prior to the submission of the
request. For complex requests, it is difficult to expect all possible requests.
Our goal is to support arbitrary queries which are non-procedural and
formulated dynamically. We use the CC-hierarchy because the explicit
structure in a unified view helps the formulation of a complex query navigat-
ing through several classes. The CC-hierarchy corresponds to the binary
association in IKOODM. The class and object, which are the IKOODM core
elements, are also OO data model primitives.

In the relational data model, the relationship between two relations is
represented by the joining attributes which are the common attributes of the
two relations. The access paths among the relations can be found by identi-
fying joining attributes.

232 Heterogeneous Information Management Systems

In order to provide a unified view of OO databases and relational
databases in terms of OO data model primitives, the relational data definition
must be translated to an equivalent OO data definition. In addition, the
definitions of the OO databases which have relationships to relational
databases need to be modified to include access paths to the relational
databases.

A relation R with attributes will be translated to a base class C with the
same attributes. Since R is a relation in at least first normal form, C does not
contain any composite attributes. Obviously, C does not include any methods
either. A class translated from a relation is not in a class hierarchy with any
class in an OO database or classes translated from other relations. Initially, the
translated class becomes a subclass of the system-defined root class (or any
class which has the characteristics of the root class).

The sets of classes in local OO databases are linked by class hierarchies
(or ISA hierarchy) and CC-hierarchies. These class structures become a part
of the integrated schema. All the methods in the local classes are included. At
this point, the integrated schema consists of class structures from local OO
databases and standalone classes from local relational databases. The inte-
grated schema is completed by adding CC-hierarchies to represent access
paths.

Consider the access path between two classes C(R) and C(S) translated
from relations R and S, respectively. The access path in the relational database
is via joining attributes. In creating a CC-hierarchy between C(R) and C(S),
we have to decide the direction of the CC-hierarchy. The value of a composite
attribute can be a set of object identifiers (OIDs) of the class which is the
domain of the composite attribute. Therefore, if there is a one-to-many
relationship from R to S, the direction of the CC-hierarchy becomes C(R) to
C(S). This is accomplished by adding a composite attribute to C(R). The
domain of the composite attribute is the set of C(S).

If the relationship between R and S is one-to-one or many-to-many, the
direction of the CC-hierarchy is arbitrary. Suppose the direction of the CC-
hierarchy is C(R) to C(S). If the relationship between R and S is one-to-one,
the domain of the composite attribute is C(S). If the relationship is many-to-
many, the domain is the set of C(S).

When a global query references both a relational database and an OO
database, a translator must generate a relational query to access the relational
database. The relational query retrieves the values of attributes from the
relational database. Therefore, the access path between a relation and a class
exists only if there is a common attribute in the relation and the class. Thus,

Chung, Kim & Dao 233

the access path between a relation and a class can be handled in the same way
as the modeling of the access path between two relations.

Consider an access path between two classes in different local OO
databases. This type of access path is not different from the access path in the
local OO database design. However, there is one important difference in terms
of actual data storage.The local OO database is populated according to the
local OO data definition. The values of composite attributes in a local OO data
definition are stored in the local OO database. On the other hand, the
composite attributes added in the global view merely specify the access paths.

Suppose there is a common attribute between the two classes. An
effective way to handle the values of the added composite attribute is to
compute the values during the query execution time by using the values of the
common attribute. For this reason, we only consider the access path between
classes in different local OO databases when there is a common attribute in
the classes. Therefore, the method for creating a CC-hierarchy can be applied
to model all possible types of access paths: between relations, between a
relation and a class, and between classes.

Since the issue of handling OIDs in the unified view requires more
research, we outline our approach. An OID in the unified view consists of the
OID of a local object and the site of the object. Using the site information, a
message sent to an OID in the unified view can be routed to the local object.
In case the local object is a tuple in a relation, the primary key value of the tuple
takes the role of the OID. A message to a tuple is only to retrieve the value of
an attribute corresponding to the message name. Therefore, a message using
the primary key value is translated to an SQL query which contains the
primary key value in the WHERE clause.

The following example illustrates the creation of access paths and an
integrated schema. Consider a relational database at Location 1 consisting of
a relation DESIGN (DS#, DESIGNER, MANUFAC_COST) and an OO
database at Location 2 with two classes DRAWING (DR#, CAD_SYSTEM,
DS#, PICTURE (DOMAIN_IS IMAGE)) and IMAGE (). We only specified
the domain of a composite attribute which represents a CC-hierarchy. The two
local databases are depicted in Figure 1. A single-arrow on a CC-hierarchy
indicates the direction of an one-to-one relationship.

There is a common attribute DS# between the relation DESIGN and the
class DRAWING. We assume that a design consists of many drawings. Since
the relationship between DESIGN and DRAWING is one-to-many, a CC-
hierarchy is created from C(DESIGN) to C(DRAWING) by adding a compos-
ite attribute DRG whose domain is a set of C(DRAWING). The three
translated classes are given below.

234 Heterogeneous Information Management Systems

C(DESIGN) (DS#, DESIGNER,
 MANUFAC_COST, DRG (DOMAIN_IS
 SET OF C(DRAWING)))
C(DRAWING) (DR#, CAD_SYSTEM, DS#,
 PICTURE (DOMAIN_IS C(IMAGE)))
C(IMAGE) ()

Figure 1: Local Data Definitions

 Figure 2: An Integrated Schema

Chung, Kim & Dao 235

Figure 2 shows the integrated schema in the OO data definition. It is
straightforward to represent the integrated schema using IKOODM, which
will be shown two sections after. A double arrow on a CC-hierarchy indicates
the direction of an one-to-many relationship. The processing of a query
referencing the integrated schema is being investigated. A query processing
method is outlined using an example two sections after.

INTERFACE TO HIERARCHICAL DATABASES
Currently, the interface between the OO database and the hierarchical

database is made in two steps: the OO database to/from the relational database
and the relational database to/from the hierarchical database (the actual
transformation is not between databases but between data models). The
interface between the OO database and the relational database was discussed
in the previous section.

For the interface between the relational database and the hierarchical
database, we specifically investigate the relational query language SQL
interface to the hierarchical DBMS IMS. IMS is based on a hierarchical data
model and uses DL/1 as a data manipulation language. Two major issues of
the interface are (1) the translation of hierarchical data definition to an
equivalent relational data definition and (2) the translation of an SQL
statement to an equivalent program processable by IMS. Another important
issue is the automatic selection of IMS secondary indexes. The secondary
index is an integral part of data management. The secondary index manage-
ment of IMS is quite different from that of the relational DBMS. An SQL
interface to IMS has been implemented and the performance of he interface
has been tested using various IMS databases (Chung et al., 1993).

PROTOTYPE ARCHITECTURE
In this section, we describe the architecture of a prototype, Federated

Information Management System (FIMS). In our prototype, data are stored in
relational, object-oriented, and hierarchical DBMSs.

FIMS Architecture
FIMS provides the users with an illusion of a globally integrated system

using either a single OO query language or a graphical interface. FIMS
architecture is shown in Figure 3. Major components of FIMS are: Query
Browser and Editor (QuBE), Distributed Information Manager (DIM), Local
Information Manager (LIM), and Knowledge-Based Manager (KBM). We
use IKOODM as the common data model to represent the unified view.

236 Heterogeneous Information Management Systems

(1) Query Browser and Editor (QuBE)
QuBE supports a uniform and seamless interface for querying, browsing,

and editing data and metadata. Users can browse, edit, and query through all
IKOODM classes using a directed graph metaphor. Each node in the graph
represents a class and each link represents a relationship between classes. The
editing mechanism is used by the DBA or the Knowledge-Based Schema
Integration Tools (KBSIT, see the next subsection) to generate and update
IKOODM classes. The query mechanism supports both OO queries, and class
requests which are transformed to an internal language (OO query language).
QuBE is developed using the C++/Interviews object-oriented graphics which
is built on top of X-windows. (see (Williamson et al., 1990) for more details).

(2) Distributed Information Manager (DIM)
DIM decomposes the query sent by QuBE. DIM interfaces with KBM to

extract information in the data structure and the enterprise semantic classes
for query decomposition. The Query Decomposer And Optimizer decom-
poses the query into a set of subqueries expressed in an OO query language.
The Distributed Processing Coordinator sends the subqueries to LIMs.

Figure 3: FIMS Architecture

Chung, Kim & Dao 237

(3) Local Information Manager (LIM)
LIM executes a local query autonomously and interfaces with a local

DBMS. During local query processing, LIM may need to communicate with
other LIMs to receive or send the data. Each LIM has its own controller to
coordinate the query processing. LIM also translates a subquery expressed in
the OO query language into a query or a program in a data manipulation
language used by the local DBMS.

(4) Knowledge Based Manager (KBM)
As discussed before, we used IKOODM to represent classes in the

unified view, the relationships among the classes, and the data distribution.
The information is itself another database. Therefore, a database management
system is required to store and manage the information. We choose an
OODBMS as the underlying DBMS because the OO data model provides a
better fit to our IKOODM. We have chosen ITASCA OODBMS in our
prototype; however, any OODBMS with comparable functionality can be
used. KBM provides a common interface to ITASCA to support requests from
other modules: DIM, QuBE, and KBSIT. It also supports integrity constraints
during update of IKOODM. The semantic query processor in KBM provides
query formulation capability when requested through the graphical interface.
Based on the intent of the user’s request, it automatically traverses though
IKOODM classes to build a query and sends it to DIM.

There are two types of requests: retrieval and update. DIM sends a request
to KBM to retrieve information about IKOODM classes for query decompo-
sition and optimization. The browser mechanism in QuBE interfaces with
KBM to traverse through IKOODM classes for displaying purpose. KBSIT
sends both retrieval and update requests to KBM during schema integration.

Semantics Issues in Schema Integration
In this subsection, we describe our basic approach to handling semantics

in schema. There are several major semantics problems with the schema
integration process (Larson et al., 1989):

Schema Semantics
The knowledge about the semantic relationships of local information

management systems is usually represented implicitly or explicitly in the data
model and in the applications. Four major input sources that can be used for
acquiring the relationships are the users, the database administrator (DBA),
the database schema and the data. It is not feasible in practice to gather all
DBAs, the original designers, and the users from different organizations
together at a particular time and place. In addition, documentation of the
database specifications is missing most of the time. The lack of knowledge of

238 Heterogeneous Information Management Systems

the underlying local information systems makes the integration process
difficult.

Schema Incompatibilities
Another problem with schema integration is that each local schema is

designed independently and tailored for its own domain. For example, two
different data structure might represent the same data; the same field names
might represent different data; there may be different unit representation of
the same data, etc. Advanced data modeling techniques and transformation
algorithms need to be designed to integrate the structure.

Automatic Tools
Manually integrating the separated schemas is an error prone process and

because of its complexity, it is not practical to keep track of the relationships,
the data structure, and different rules or special cases employed during the
schema integration process.

Research progress in (Garcia-Solaco et al., 1995; Larson et al., 1989; Yu
et al., 1990) points out that success in schema integration depends on
understanding the semantics of the schema components (e.g., attributes,
relations, entity sets, relationship sets), and the ability to capture and reason
with the semantics. Our approach is to determine and explicitly represent
attribute relationships and schema interrelationships in IKOODM. Concepts
in the object-oriented approach such as complex objects, methods, and
inheritance provide better features for representing the relationships than
other approaches. Moreover, the ability to use either declarative or procedural
languages as appropriate is helpful to solve semantic and structural incompat-
ibilities. Case-based reasoning techniques are being explored to partially
automate the schema integration process.

The solution to the schema integration problem cannot and will not be
solved by one algorithm or some representation scheme. Rather, a system
approach that uses a set of tools to assist the database administrator/user in
building and managing the information is the best solution. We are currently
defining and prototyping Knowledge-Based Schema Integration Tools which
is a set of tools that are required for the schema integration process. In our
approach, schema integration is composed of three major phases as follows:

(1) Schema Definition Phase
All local data objects (i.e., relation or segment) and methods that are used

to interface with the underlying DBMSs are defined in the object storage layer
of IKOODM.

(2) Data Discovery Phase
In a database environment, the data, the queries, the schemas, the users,

and the DBA’s knowledge are the major resources which can be used to
identify the semantics of an attribute in a class. The goal of this phase is to first

Chung, Kim & Dao 239

identify the semantics of an attribute and its relationship with other attributes.
Second, a representation schema is needed to represent this semantics. The
first goal can be achieved manually using the above resources. Our research
focuses on partially automating this process. Common concepts, concept
hierarchies, and aggregate concept hierarchies are used to achieve the second
goal (Yu et al., 1990). The hierarchies will clarify the meaning of an attribute
that is usually expressed more syntactically in the database. This phase will
give us a richer semantic view associated with each schema attribute. The
hierarchies are currently not expressed in IKOODM. The relationships
between classes are expressed using the data structure layer.

(3) Schema Reclassification Phase
Concept hierarchies produced by the second phase may be reclassified

when integrating new schema objects to form a unified view (enterprise
layer). The reclassification depends upon the results from identifying the
similarities and differences of schema attributes. A similarity function algo-
rithm is currently under development for this purpose (Yu et al., 1990).

In addition, we are using the case-based reasoning provided by our
Modular Knowledge Acquisition Tools (M-KAT) (Dolan, 1989) to capture
the schema integration problems and solutions. M-KAT is a set of automated
knowledge acquisition tools for capturing problem-solving expertise. Each
example of a schema integration problem-solving is a case. The schema
integration process involves taking a concept hierarchy acquired from the data
discovery phase and encoding them as input specifications. Transformation
heuristics for schema reclassification such as generalization and specializa-
tion are encoded as rules, and are attached with the concept hierarchies.
Output specification is the suggested enterprise class. As schema integration
proceeds, more and more problem-solving cases are acquired and stored in
the M-KAT knowledge-base when approved by the DBA. Each case can be
used to help in the integration of other similar schemas. By applying the
learning techniques, we want to achieve two goals: (1) to partially automate
certain kinds of reclassification and (2) to have the system learn more
knowledge about the concept hierarchies from various schema integration
cases. We are currently in the process of identifying different sets of tools to
partially automate the processing steps for the above three phases.

AN EXAMPLE
We present an example which illustrates the IKOODM modeling and the

interface to heterogeneous databases in an OO paradigm. In particular, we will
show the retrieval of non-conventional data which is difficult without using
an OO approach. This example also shows the object identifier (OID) based

240 Heterogeneous Information Management Systems

retrieval which is different from the conventional value-based retrieval. Since
the OO query language is not standardized, we will describe the query
processing informally using an SQL-like OO query syntax.

Suppose CAR_BODY_DESIGN is a relation stored under a relational
DBMS at Site 1, TRUCK_BODY_DESIGN is a root segment under IMS at
Site 2, and DRAWING and IMAGE are classes under an OODBMS at Site
3 with the following definitions:

CAR_BODY_DESIGN (DS#, DESIGNER,
 MANUFAC_COST, DS_DATE)
TRUCK_BODY_DESIGN (DS#, DESIGNER,
 MANUFAC_COST, DS_DATE)
DRAWING (DR#, ENGINEER,
 CAD_SYSTEM, PANEL_NAME, DS#,
 PICTURE (DOMAIN_IS IMAGE))
IMAGE ()
Using the method described three sections before, the above local data

definitions are translated to the base class definitions as follows:
C(CAR_BODY_DESIGN) (DS#, DESIGNER,
 MANUFAC_COST, DS_DATE, DRG
 (DOMAIN_IS SET OF C(DRAWING)))
C(TRUCK_BODY_DESIGN) (DS#,
 DESIGNER, MANUFAC_COST,
 DS_DATE, DRG (DOMAIN_IS SET
 OF C(DRAWING)))
C(DRAWING) (DR#, ENGINEER,
 CAD_SYSTEM, PANEL_NAME, DS#,
 PICTURE (DOMAIN_IS C(IMAGE)))
C(IMAGE) ()
As a representative of defining a class, the creation of an abstract class

VEHICLE_BODY_DESIGN from the base classes
C(CAR_BODY_DESIGN) and C(TRUCK_BODY_DESIGN) is described
below.

DEFINE CLASS
 VEHICLE_BODY_DESIGN
 Internal Structure:
 <DS# int>, <DESIGNER char 25>,
 <MANUFAC_COST float>,
 <DS_DATE date>,
 <DRG set of C(DRAWING)>
 Semantic Link:

Chung, Kim & Dao 241

 To-classes: C(CAR_BODY_DESIGN),
 C(TRUCK_BODY_DESIGN),
 C(DRAWING)>
 Declaration method: Generalization
 (C(CAR_BODY_DESIGN),
 C(TRUCK_BODY_DESIGN))
 Association
 (VEHICLE_BODY_DESIGN,
 C(DRAWING))
 Derivation Structure:
 Manipulation method:
 Generalization-Decomposition
 (VEHICLE_BODY_DESIGN)
 Association-Decomposition
 (VEHICLE_BODY_DESIGN,
 C(DRAWING))
 Data distribution:
 {C(CAR_BODY_DESIGN)
 fragmented at S1 in RDBMS x,
 C(TRUCK_BODY_DESIGN)
 fragmented at S2 in IMS}
The classes in the IKOODM layers are shown in Figure 4. Consider a user

request to find OID’s of the DRAWING such that the name of the panel is a
quarter panel and the manufacturing cost of the vehicle body which contains
the panel is over 150. An SQL-like OO query of the request is as follows:

VEHICLE_DRAWING_OID =
 SELECT OID
 FROM C(DRAWING)
 WHERE PANEL_NAME =
 ‘quarter panel’ AND
 (VEHICLE_BODY_DESIGN.DRG
 MANUFAC_COST > 150)
where, VEHICLE_BODY_DESIGN.DRG is a composite attribute rep-

resenting a CC-hierarchy between VEHICLE_BODY_DESIGN and
C(DRAWING).

QuBE sends this query to DIM. Since VEHICLE_BODY_DESIGN has
two subclasses C(CAR_BODY_DESIGN) and C(TRUCK_BODY_DESIGN) which
correspond to base classes, the Query Decomposer And Optimizer in DIM
decomposes the query to the following subqueries using the Manipulation
method Generalization-Decomposition:

Q1: CAR_DRAWING_OID =

242 Heterogeneous Information Management Systems

 SELECT OID
 FROM C(DRAWING)
 WHERE PANEL_NAME =
 ‘quarter panel’ AND
 (C(CAR_BODY_DESIGN).DRG
 MANUFAC_COST > 150)
Q2: TRUCK_DRAWING_OID =
 SELECT OID
 FROM C(DRAWING)
 WHERE PANEL_NAME =
 ‘quarter panel’ AND
 (C(TRUCK_BODY_DESIGN).DRG
 MANUFAC_COST > 150)
At this time, the Query Decomposer And Optimizer establishes the

following merging relationship:
VEHICLE_DRAWING_OID =
CAR_DRAWING_OID U
 TRUCK_DRAWING_OID
where U is the set union operator.

Figure 4: A Unified View in IKOODM

Chung, Kim & Dao 243

The subqueries Q1 and Q2 are further decomposed by locations, using
the Manipulation method Association-Decomposition in
C(CAR_BODY_DESIGN) and C(TRUCK_BODY_DESIGN), as follows
where Qij is the subquery of Qi at Site j:

Q11: DS#_SITE1 =
 SELECT DS#
 FROM C(CAR_BODY_DESIGN)
 WHERE MANUFAC_COST >
 150
Q13: CAR_DRAWING_OID =
 SELECT OID
 FROM C(DRAWING)
 WHERE PANEL_NAME =
 ‘quarter panel’ AND
 DS# IN DS#_SITE1
where IN is an operator testing the membership. DS# IN DS#_SITE1

implies that a semijoin can be used to process Q1 and that qualified DS# from
Site 1 is transferred to Site 3. Similarly,

Q22: DS#_SITE2 =
 SELECT DS#
 FROM (TRUCK_BODY_DESIGN)
 WHERE MANUFAC_COST >
 150
Q23: TRUCK_DRAWING_OID =
 SELECT OID
 FROM C(DRAWING)
 WHERE PANEL_NAME =
 ‘quarter panel’ AND
 DS# IN DS#_SITE2
The Distributed Processing Coordinator in DIM sends the subqueries to

LIMs. Each LIM translates the subqueries to queries in the query languages
used by local DBMSs. Q11 is already in SQL. The only translation is the
change of the global definition C(CAR_BODY_DESIGN) to the local
definition CAR_BODY_DESIGN. As explained previously, Q22 is first
translated to a relational query, which Q22 already is. Then, using the
procedure described in (Chung et al., 1993), the relational query is translated
to a DL/1 program, which is submitted to IMS. Since Q13 and Q23 are OO
queries submitted to an OODBMS, the only translation is the change from
C(DRAWING) to DRAWING. LIM also provides an interface to a local
DBMS.

244 Heterogeneous Information Management Systems

The variable VEHICLE_DRAWING_OID contains the OID’s of the
drawing requested by the user. Suppose VIEWER is the OID (that is, the OID
is in the variable VIEWER) of an object whose class defines a method
PRESENT which contains an image preview program. For any OID X from
VEHICLE_DRAWING_OID, the following message displays the picture of
a selected panel:

PRESENT VIEWER (PICTURE X)
In this case, the method PRESENT performs the following: (1) create a

temporary bit map file from an object whose OID is X.PICTURE, (2) invoke
an image preview program with the temporary file as an input, (3) determine
the location and size of an window using data in an object whose OID is
VIEWER, and (4) delete the temporary file. As shown above in (PICTURE
X), messages are also supported to retrieve the value of each attribute of an
object.

This example shows how a user can identify and view the pictures of
particular panels of certain vehicles using data distributed in heterogeneous
databases.

CONCLUSIONS
A model and methods were developed using an object-oriented paradigm

for interoperability of diverse information management systems. An inte-
grated knowledge-object-oriented data model was established to provide a
uniform view of heterogeneous databases which represents both structure and
behavior. The model synthesizes concepts from knowledge representation,
object-oriented programming, and semantic data models. The methods were
derived for translating data definitions and queries between object-oriented
databases and relational databases and between relational databases and
hierarchical databases. Consequently, users and applications can access the
three types of databases through a unified view and using a standard query
language.

An object-oriented approach allows us to handle traditional data and non-
traditional data such as images in a uniform way as well as to identify and
explicitly represent the semantics in the schema. In addition, the encapsula-
tion and the IKOODM layer structure that uses the class hierarchy promote the
code reusability. Therefore, the ability to describe both structure and behavior
in a unified view not only accommodates the access to heterogeneous
databases but also facilitates the development of a heterogeneous database
management system in the software engineering point of view. However, the
features of the object- oriented data model and language are still being
developed, thus the lack of the standard of the model and language is currently

Chung, Kim & Dao 245

a problem. The architecture of a prototype was established and the prototype
interfacing the relational database, object-oriented database and the hierar-
chical database is being developed.

The research in the following areas is necessary in the future in order to
provide interoperability more effectively and to a wider range of information
management systems:
• Since the object-relational database system(ORDB) attracts a consider-

ably attention recently, it is desirable to interface ORDB.
• The distributed update problem has not been completely solved when it

is coupled with recovery in a multi-user environment.
• A knowledge-based approach is promising to develop a tool for automat-

ing the schema integration process as much as possible.

ACKNOWLEDGMENTS
The authors wish to thank the editor, an associate editor, and a reviewer

for helpful comments and suggestions. This research was supported in part by
the grant from the Korea Science and Engineering Foundation with the grant
number KOSEF 95-0100-23-04-3.

REFERENCES
Ahmed R. (1991). The Pegasus heterogeneous multidatabase system. IEEE

Computer, 24(12), 19-27.
Bertino, E., Negri, M., Pelagatti, G. and Sbattela, L. (1989). Integration of

heterogeneous applications through an object-oriented interface. Informa-
tion Systems, 14(5), 407-420.

Bukhres, O. (1993). InterBase: An execution environment for heterogeneous
software systems. IEEE Computer, 26(8), 57-69.

Butterworth, P., Otis, A. and Stein, J. (1991). The gemstone object database
System. Communications of the ACM, 34(10), 64-77.

Chung, C. (1990). DATAPLEX: An access to heterogeneous distributed
databases. Communications of the ACM, 33(1), 70-80. (corrigendum,
33(4), 459, 1990.)

Chung, C. and McCloskey, K. (1993). Access to indexed hierarchical data-
bases using a relational query language. IEEE Transactions on Knowledge
and Data Engineering, 5(1), 155-161.

Dao, S. and Templeton, M. (1987). Strategies for accessing distributed data.
Minnowbrook workshop on database machines and AI. New York.

Deux, O. (1991). The O2 system. Communications of the ACM, 34(10), 34-48.
Dolan, C., Cuda, T., Goldman, S. and Keisey, D. (1989). Automatic knowl-

edge acquisition using case-based reasoning tools. Hughes Research Lab.
Technical Report.

246 Heterogeneous Information Management Systems

Garcia-Solaco, M., Saltor, F. and Castellanos, M. (1995). A structure based
schema integration methodology. Proceedings of 11th International Con-
ference on Data Engineering, 505-512.

Hurson, A., Pakzad, S. and Cheng, J. (1993). Object-oriented database
management systems: evolution and performance issues. IEEE Computer,
26(2), 48-60.

Kaufman, K., Michalski, R. and Kerschberg, L. (1991). Mining for knowl-
edge in databases, goals and general descriptions of the INLEN system.
Knowledge Discovery in Databases, 449-462. Cambridge, MA: MIT.

Kim, W. (1990). Architecture of the ORION next-generation database
system. IEEE Transactions on Knowledge and Data Engineering, 2(1),
109-124.

Lamb, C., Landis, G., Orenstein, J. A. and Weinreb, D. (1991). The objectstore
system. Communications of the ACM, 34(10), 50-63.

Larson, J., Navathe, S. and Elmasri, R. (1989). A theory of attribute equiva-
lence in databases with applications to schema integration. IEEE Transac-
tions on Software Engineering, 15(4), 449-463.

Litwin, W., Mark, L. and Roussopoulos, N. (1990). Interoperability of multiple
autonomous databases. ACM Computing Surveys, 22(3), 267-293.

Qian, X. (1995). Query interoperation among object-oriented and relational
databases. Proceedings of 11th International Conference on Data Engi-
neering, 271-278.

Reddy, M. P., Reddy, P. G. and Gupta, A. (1994). A methodology for
integration of heterogeneous databases. IEEE Transactions on Knowledge
and Data Engineering, 6(6), 920-933.

Soloviev, V. (1992). An overview of three commercial object-oriented
database management systems: ONTOS, objectstore, and O2. ACM
SIGMOD Record, 21(1), 93-104.

Thomas, G. (1990). Heterogeneous distributed database systems for produc-
tion use. ACM Computing Surveys, 22(3), 237-266.

Williamson, R., Goldman, S. and Dao, S. (1990). Query browser and editor
design document. Hughes Research Lab., Technical Report.

Yu, C., Sun, W., Dao, S. and Keirsey, D. (1990). Determining relationships
among attributes for interoperability of multidatabase systems. Workshop
on Multidatabases and Semantic Interoperability, 10-15. Tulsa, OK.
November 2-4.

Becker & Jorgensen 247

Chapter 17

A Recursive Approach to Software
Development

Shirley A. Becker
Florida Institute of Technology, USA

Alan A. Jorgensen
Advanced Engineering Technology, Melbourne, FL, USA

Researchers and practitioners alike agree that the waterfall approach to
software development results in poor quality software systems. Unfortunately,
the waterfall approach is inherently used in almost all of today’s development
efforts resulting in system failures. The problem lies in the forward, linear
development effort that produces inconsistent and incorrect specifications,
designs, and code artifacts. It is proposed in this paper that a recursive
software development process be used as a means of managing the complexity
of today’s software systems. The recursive approach has the flexibility needed
to perform development activities in any order to ensure that system
requirements are met.

INTRODUCTION
Since the recognition that a “coding and debugging” process doesn’t produce

defect-free software systems, software development process models have con-
tinued to evolve. The models range from a simplistic, sequential set of work activi-
ties as defined in the waterfall approach to more sophisticated cyclic work activi-
ties as provided by the incremental and spiral models. These software process
models include a set of development phases that are typically performed in a
predefined order based on top-down decomposition.

Previously published in Challenges of Information Technology Management in the 21st Century, edited
by Mehdi Khosrow-Pour. Copyright © 2000, Idea Group Publishing.

248 A Recursive Approach to Software Development

The waterfall software development process model was the first attempt at
formalizing the development process by identifying an ordered set of work phases
(Royce, 1970). The sequential nature of performing these phases, as shown in
Figure 1, resulted in missed requirements, incorrect and incomplete designs, and
various defects uncovered late in the development process, among other prob-
lems. As a result, the waterfall approach is now considered an unacceptable if not
an obsolete approach to software development because of its missing feedback
loops. However, it laid the groundwork for developing more rigorous process
models for software development.

The incremental development process model supposedly addressed the weak-
nesses of the waterfall model by decomposing a system into increments each of
which is completed using a set of development activities. Each increment, as shown
in Figure 2, may be viewed as a fully functional “end-to-end” component that can
be readily integrated into previous increments. A major drawback to this ap-
proach is that the decomposition of a system into increments may not be a straight-

Figure 1: Waterfall Model

Figure 2: Incremental Development Model

Becker & Jorgensen 249

forward process as it may be difficult to identify and prioritize “self-contained”
subsystems (Sorensen, 1995).

The spiral process model of software development made risk an inherent com-
ponent of an iterative development process through the introduction of prototyping
(Boehm, 1988). Prototyping is used to minimize the risk of misunderstood or
missing requirements and to gain insight into the technical aspects of the system
under development. Too often the prototype, developed using a waterfall ap-
proach, is implemented even though there are missing, incomplete, or incorrect
parts.

Though industry has advanced from adhoc development practices to more
rigorous software development process models, there is still room for improve-
ment. The incremental and spiral approaches helped us recognize the need for
structured yet flexible process models for software development. Unfortunately,
these models still fall short of providing the means for developing high-quality
software systems.

In this chapter, we describe a software process model that addresses several
weaknesses inherent in the popular software process models. Section 2 describes
a shift in the way that we view software development. To support this enhanced
view of software development, a recursive software process model is described
in Section 3. The chapter concludes with future research directions.

CHANGING OUR MENTAL MODEL
Top-down decomposition, which is inherent in all the popular development

process models, has established the paradigm for intellectually managing the re-
quirements. Unfortunately, when top-down decomposition is used as a basis for
development work, there is a tendency to develop “isolated” lower level designs

Figure 3: Part of a Function Hierarchy

250 A Recursive Approach to Software Development

as newly discovered design components or modifications to existing ones are not
reflected in parent and sibling components. This mental model of software de-
composition suffers from the waterfall approach of forward, linear development
with little or no modifications to previous work. This may be the result of project
pressures, poor or missing information management, lack of an enforced process,
or the result of other organizational impediments. Figure 3 shows a function hier-
archy representation of top-down decomposition with a list of potential problems.

There is a natural order to development work that should be driven by a com-
mon understanding of system requirements in conjunction with development goals.
This natural order is based on a mutual dependence that exists among all software
parts such that there can be no “whole” software system when components are
missing, incomplete, or incorrect. In addition, each part is a system in itself com-
prised of other parts that are mutually dependent and make up a whole. No sys-
tem part can be viewed in isolation of other parts, as it does not exist indepen-
dently of them. This concept of “dependent composition” is shown in Figure 4
where dependencies among parts are multidimensional (though shown here in a
three dimensional form for illustrative purposes).

This inherent complexity requires a mental shift in the way that the software
development process is viewed. What is needed is a more effective approach to
understanding software behavior than is traditionally offered by a hierarchical de-
composition of separate software parts. A recursive expansion process is pro-
posed that is based on creativity and critical thinking given what is known about
the system at any given point in time.

Figure 4: “Dependent Composition” of System (S)

Becker & Jorgensen 251

RECURSIVE SOFTWARE PROCESS MODEL
Recursion is the method in which a problem is solved by reducing it to
smaller (simpler) cases of the same problem (Kruse & Ryba, 1999;
Rogers, 1967, p.6).

A software process model is described that focuses on recursive expansion of
specification, design, code and other components driven by clearly defined devel-
opment goals (e.g., time-to-market, number of defects). The recursive approach
is a mental shift from the way other software process models define the develop-
ment process. In this approach, development work starts with the whole system in
terms of system requirements, and finishes with the implemented system, as sys-
tem requirements are met.

The recursive development process, illustrated in Figure 5, shows the com-
plexity of software development as each part is not complete until its requirements
are met, and requirements may change as dependencies on other parts are dis-
covered. In this figure, it is shown that the system requirements are formalized in
specifications and designs (parts A and B), which in turn will be expanded into

Figure 5: The Recursive Software Development Process

Figure 6: An Illustration of a Missing Constraint

252 A Recursive Approach to Software Development

more granular specification, design, and code artifacts (a1, a2, …, an and b1, b2,
…, bn). A recursive process effectively manages this complexity because of its
flexibility in performing specification, design, code, maintenance, and other activi-
ties not in a pre-defined order but intuitively as system requirements become known.

It is important to note that this conceptualization requires a new way of thinking
about completion criteria for a particular development activity. Often times, comple-
tion criteria are used to determine when a specification, design, code or other
artifact is completed. A false sense of closure may be promoted because “com-
pleted” artifacts are stored and seldom updated when missing, incorrect, or in-
complete requirements are discovered at a later date. The waterfall approach is
implicitly being followed to develop these software systems.

It is inherent in the recursive software process that each part is complete and
correct when the whole system is complete and correct. Completion criteria are
useful in providing insight into missing or incorrect system behavior but must be
viewed as feedback tools and not closure mechanisms. Given the number of de-
pendencies that exist among the system parts, it is virtually impossible to conclude
that work on any “one part” is finished until the system as a whole is implemented.

What is needed is a set of “readiness criteria” driven by the development goals
in order to determine when to move on to the next development activity. Readi-
ness criteria may include traditional completion and correctness checks, but the
emphasis shifts from a sense of closure with this phase of work to one of expand-
ing upon it. This approach provides a conducive environment for discovering gaps
in our specifications, designs, and code that need to be filled in before the system
is implemented.

Goal: Description
 Correct All artifacts produced are correct in terms of capturing the

“true” requirements of the user.
 Precise & Each artifact can be directly expanded into granular
 Unambiguous details without interpretation.
 Complete Each artifact captures the necessary and sufficient behavior.
 Consistent Each artifact captures the same behavior as its abstracted

counter parts. There is no conflicting terms or contradictory
behavior.

 Modifiable & Each artifact is supported by dictionary definitions,
 Maintainable search mechanisms, and naming conventions.
 Holistic Each artifact encompasses the whole system in terms of its

relationships with other components (e.g., interfaces).
 Tolerant Each artifact must be tolerant of mistakes made (e.g.,

incomplete, inconsistent) due to the size and complexity of the
application under development.

 Understand- All parties using the artifact can understand it or have
 able supporting artifacts to assist in understanding it (e.g.,

repository).

Table 1: An Extraction of Quality Goals for Software Development IEEE
Standard 830-1993

Becker & Jorgensen 253

Readiness Criteria
In order to understand what readiness criteria means for a development activ-

ity, we need to understand what drives the development process. Most everyone
would agree that high quality is an aspiration for all software projects yet few of us
would agree on what “quality” really means. Though quality is typically inferred to
mean “zero-defect”, there may be other goals that are as important as or may take
precedence. Time-to-market, for example, may have a higher priority than zero-
defects in order to maintain a competitive advantage. Quality may also translate
into customer satisfaction, usability, and understandability, among other goals (re-
fer to Table 1 for a comprehensive list of development goals).

Readiness criteria associated with the modifiable and maintainable goal, for
example, might mean that a checklist is used during a team review (along with
other readiness criteria) to determine whether a particular artifact has followed
naming conventions, maintained version control, and is readily accessible in the
database along with all supporting artifacts (links to parent, child, sibling parts),
among others.

Time-to-market goals, for example, may dictate that after a certain amount of
functionality has specified, the design and coding activities are initiated. The time-
to-market readiness criteria may be based on a schedule of work with tollgate or
milestone dates that specify when work activities are initiated, expanded or stopped.

Representation of Software Complexity
A readiness criterion for determining whether system requirements are met is

the inclusion of all inputs, outputs, computation, and real-world constraints. Many
common software problems arise when system constraints have not been included
in the software system (refer to Whittaker & Jorgensen (1999) for a discussion on
software failures). A software part and its dependencies on other parts can only
be fully understood in terms of its inputs, outputs, computations, and constraints.

Four types of constraints have been identified by Jorgensen (1999) that are
integral in the completion of the system as a whole and in terms of each specifica-
tion, design, and code component. The four constraints are:
• Input Constraint – Each input that is received by the system is constrained by

a range of valid data that would result in a correct (or predictable) output. A
designed input constraint, for example, would check parameter data to ensure
that it falls within an acceptable range.

• Output Constraints – Each output generated by the system is bound by the
constraints on the receiving media, such as field width, and required output
precision and range, among others. These constraints need to be taken into
consideration in order to ensure that valid output is presented to the user (e.g.,
display data is not truncated) or is passed to a calling routine.

254 A Recursive Approach to Software Development

• Computation Constraints – Computation constraints ensure that the inputs
and new data are properly constrained in order to produce valid computational
results. Without such constraints, the stored data may become corrupted and/
or unpredictable outputs generated resulting in system failure or inaccurate re-
sults.

• Data Constraints - Data constraints validate the consistency of new data with
system requirements and system constraints as well as check for corrupted
data from previous computations.
Figure 6, for example, shows the computation of a running average design that

fails due to a missing computation constraint. Without such constraints, a system
part is guaranteed to be incomplete producing a range of unpredictable failures
upon implementation.

There are many specification, design, and coding techniques that provide a
notation for inputs, outputs, and functionality. But what these software techniques
are missing is explicit representation of system constraints on inputs, outputs, data,
and computation. The inclusion of these constraints in software development arti-
facts is essential in ensuring system requirements are met. Thus, constraint speci-
fication and design become an integral part of the recursive development process.

CONCLUSION AND FUTURE RESEARCH
The recursive approach to software development holds great promise as a

means of developing high-quality software systems. This approach focuses on
recursive development such that a system and its parts are completed when sys-
tem requirements have been met. This requires a mental model of software as a
sum of its parts and their dependencies with other parts. None of the other soft-
ware development process models provide the flexibility needed to support this
system view.

Our research efforts are focused on the use of this approach for more complex
software systems with an emphasis on developing tools to support its use. The
Goal, Question, Metrics (GQM) is being studied as a viable tool for establishing
goals and readiness criteria to manage work. Self-validating code is being studied
as another tool for ensuring that system constraints are inherently part of the code
artifacts.

REFERENCES
Boehm, B. (1988). A spiral model of software development and enhancement.

IEEE Computer, May, 61-72.
IEEE Standard 830-1993. (1994). Recommended Practice for Software Re-

quirements Specification. Standards Collection on Software Engineering,
New York: IEEE Press.

Becker & Jorgensen 255

Jorgensen, A. (1999). Software design based on operational modes. Disserta-
tion, Computer Science, Florida Institute of Technology.

Kruse, R. and Ryba, A. (1999). Data Structures and Program Design in C++.
Upper Saddle River, NJ: Prentice Hall.

Mills, H., Linger, R. and Hevner, A. (1986). Principles of Information Systems
Analysis and Design. New York: Academic Press, Inc.

Rogers, Jr., H. (1967). Theory of Recursive Functions and Effective Comput-
ability. New York: McGraw-Hill.

Royce, W. (1970). Managing the development of large software systems: Con-
cepts and techniques. WESCON, August; reprinted in Ninth International
Conference on Software Engineering, 328-338. IEEE Computer Society
Press 1987.

Sorensen, R. (1995). A comparison of software development methodologies.
CrossTalk, January, 12-18.

Whittaker, J. and Jorgenson, A. (1999). Why software fails. ACM Software
Engineering Notes.

256 Adding Alternative Access Paths to Abstract Data Types

Chapter 18

Adding Alternative Access Paths
to Abstract Data Types

Xavier Franch and Jordi Marco
Universitat Politècnica de Catalunya, Spain

We present in this paper a proposal for developing efficient programs in the
abstract data type (ADT) programming framework, keeping the modular
structure of programs and without violating the information hiding principle.
The proposal focuses in the concept of “shortcut” as an efficient way of
accessing to data, alternative to the access by means of the primitive
operations of the ADT. We develop our approach in a particular ADT, a store
of items. We define shortcuts in a formal manner, using algebraic
specifications interpreted with initial semantics, and so the result has a well-
defined meaning and fits in the ADT framework. Efficiency is assured with
an adequate representation of the type, which provides O(1) access to items
in the store without penalising the primitive operations of the ADT.

INTRODUCTION
Modular programming with abstract data types (ADT) (Liskov & Guttag,

1986) is a widespread methodology for programming in the large. In this field, it is
crucial the distinction between the specification and the implementation of ADTs,
which results in the existence of different modules for them and which can be
summarised with the information hiding principle: an ADT must be used just re-
garding the properties stated in the specification, without any knowledge of the
characteristics of its implementation, which remains hidden. This principle simpli-
fies the relationships between modules and supports the development of pro-
grams, because it is easier to code them, to test them, to reuse them and to main-
tain them.

However, the information hiding principle collides, often dramatically, with a
very usual requirement on programs: their efficiency, mainly characterised by their
execution time. The reason is that the access to a data structure implementing an
Previously published in Challenges of Information Technology Management in the 21st Century, edited
by Mehdi Khosrow-Pour. Copyright © 2000, Idea Group Publishing.

Franch & Marco 257

ADT must follow the properties that define it, which were stated in an abstract
manner without taking into account the problems related to its subsequent imple-
mentation (as it must be). In case of a context using ADTs with strong efficiency
requirements (for instance, program analysis tools construction, system program-
ming, geometric computing and combinatorial computing), their full reusability can
become impossible and it may be necessary to carry out many modifications to fit
it to this context; even more, such modifications can be so important to decide
throwing away the implementation and developing a new one.

This conflict between efficiency and modularity is a well known problem in
the ADT framework, recognised as such in the most important textbooks on data
types and data structures (Aho, Hopcroft & Ullman, 1983; Horowitz & Sahni,
1994; Cormen, Leiserson & Rivest, 1990), and solved in many cases sacrificing
modularity to achieve efficiency. Fortunately, there are many widespread ADT-
libraries that have coped the problem by incorporating the notion of location (i.e.,
a cursor —an integer referring to an array position— or a pointer) in ADT inter-
faces. This is the case for instance of STL (Musser & Saini, 1996) and LEDA
(Mehlhorn & Naher, 1999), both of them providing a similar solution to the prob-
lem: when a new element is stored in the data structure, its location is returned as
part of the result, being later usable as parameter in other operations (removal,
lookup and modification). Unfortunately, these libraries present some drawbacks
due to the fact that they are designed with the concept of location incorporated in
the component from the very beginning. Therefore, the implementations that can
be used for the ADT are often restricted to a fixed set (which makes these librar-
ies not flexible enough), the behaviour is less clear (locations and elements appear
at the same level) and some classical low-level problems appear (for instance,
meaningless uses of cursors and pointers).

Our goal in this paper is to define a general framework to reconcile both
criteria, efficiency and modularity, obtaining thus efficient programs reusing exist-
ing implementations of ADTs without any modification, and following the informa-
tion hiding principle. The proposal is based on the definition of an alternative way
to access data, that we call shortcuts. Shortcuts are added to existing ADTs in a
systematic manner, obtaining new ADTs (compatible with the previous ones) that
incorporate these alternative access paths. Then, the users of the new ADT will be
able to access the data therein not only by means of the operations introduced in
the original specification (that are the ones defining the underlying mathematical
model), but also using other new ones which follow these alternative paths, when
the use of the former operations is considered unacceptably expensive. We are
going to develop the proposal on a particular ADT, a STORE of items, although
the conclusions of our work can be applied to any other container-like ADT, i.e.
those ones arranging collections of items with an arbitrary (but completely de-
fined) policy. More details can be found at (Marco & Franch, 1997).

258 Adding Alternative Access Paths to Abstract Data Types

The ADT STORE is presented in sections 2 and 3, without and with short-
cuts, respectively. Section 4 proposes the model of stores with shortcuts, while
section 5 shows the implementation. Finally, section 6 gives the conclusions and
some future work.

THE ABSTRACT DATA TYPE STORE
From now on, we focus on the study of a particular ADT (however, it should

remain clear that the results are valid any other container-like ADT, see for in-
stance [Marco & Franch, 1997]), the ADT STORE, defined as a collection of
items, with operations of insertion, removal and retrieval of items. Just to fix a
particular definition of stores, we use a short version of the one defined by Booch
in (Booch, 1987), although this selection is arbitrary. Items are pairs <key, value>,
and so the removal and the retrieval are key-based; keys must provide a compari-
son operation, eq. As stated in Booch (1997), it is an error trying to remove or to
retrieve items using undefined keys, and also trying to insert a pair with a key that
is already therein.

We use in the paper an algebraic specification language with conditional equa-
tions, interpreted with initial semantics (Ehrig & Mahr, 1985), close to OBJ-3
[GW88] but with many simplifications to make it more readable (see Franch &
Marco [2000] for a complete OBJ-3 specification of the STORE with shortcuts).
To simplify matters, we manage errors as in Goguen, Thatcher & Wagner (1978),

specification STORE imports KEY+VALUE+BOOL
sort store
operations create: → store

insert: store key value → store
remove: store key → store
retrieve: store key → value
defined?: store key → bool

errors insert(insert(A, k, v), k, v’); remove(create, k); retrieve(create, k)
equations

[eq(k, k’) = false] => insert(insert(A, k, v), k’, v’) =
 = insert(insert(A, k’, v’), k, v)

remove(insert(A, k, v), k) = A
[eq(k, k’) = false] => remove(insert(A, k, v), k’) =

 = insert(remove(A, k’), k, v)
retrieve(insert(A, k, v), k) = v
[eq(k, k’) = false] => retrieve(insert(A, k, v), k’) = retrieve(A, k’)
defined?(create, k) = false
defined?(insert(A, k, v), k’) = eq(k, k’) or defined?(A, k’)

end STORE

Figure 1: An ADT for a store of items

Franch & Marco 259

grouping all the error expressions in a separated area and assuming implicit error propa-
gation. For simplicity purposes too, we define the ADT as a non-parameterised one,
obtaining thus classes of (total and heterogeneous) algebras as models, instead of
functors. The specification of the type is straightforward (see Figure 1).

We fix the model of the ADT STORE interpreting the equations with initial
semantics. Given the properties stated on insert (see first equation) we can say
that the model (with respect to the carrier set of the store sort) is the set of partial
functions K → V, being K and V the carrier sets of the sorts key and value,
respectively. The operations of the model are the intuitive interpretation of the
ADT operations over these functions; for instance, create is interpreted as the
function g satisfying dom(g) = Ø.

Implementations for the ADT will make use of hashing, AVL trees and so on.
Every implementation has a different behaviour with respect to execution time,
and it can be the case of implementations with a non-constant access time to
items, even linear time (e.g., unordered arrays). In this paper, we focus on imple-
mentations in main memory (and so we measure efficiency with the asymptotic
big-Oh notation [Knuth, 1976; Brassard, 1985]).

THE ABSTRACT DATA TYPE STORE WITH
SHORTCUTS

The goal of this section is to extend the ADT STORE by adding shortcuts to
access directly the items contained in stores. As a design requirement, we want a
specification not only correct but also useful. This means mainly two things. First,
the new ADT must be compatible with the former one, in the sense that the old
operations must be preserved with the same signature and with the same behaviour
as before, when shortcuts are not taken into account. On the other hand, the
specification must allow feasible implementations; the main consequence of this is
recycling of free shortcuts, although this is not necessary from the specification
point of view.

We begin by introducing a new sort shortcut. The values of this sort are
generated using two operations first_sc: → shortcut and next_sc: shortcut →
shortcut, which are declared as private to avoid out-of-control creation of short-
cuts by STORE users; shortcut creation is restricted to STORE. We provide also
with a (public) operation of shortcut comparison, eq_sc.

Shortcut creation takes place when adding new pairs to the store. So, we
add a new operation last_sc: store → shortcut, which return the shortcut to be
used to access the last pair <key, value> inserted into the store. Typically, this
operation should be called once a new pair enters the store. The obtained shortcut
can be stored in other data structures, and then coupling of ADTs (for building

260 Adding Alternative Access Paths to Abstract Data Types

new data structures) can be carried out both in an efficient and modular way. In
addition to this, the ADT provides a new operation, sc_for_key, to obtain the
shortcut bound to a pair at any moment.

Last, we add operations to access the store by means of shortcuts: removal
(remove_sc), retrieval (retrieve_sc) and modification (modify_sc). Furthermore,
we introduce an operation to find out if a given shortcut is defined (defined_sc?),
because we consider an error to access the structure using an undefined shortcut;
in fact, as we have mentioned earlier, this kind of control is one of advantages with
respect the usual notion of pointer.

We address now to the specification of the type, focusing just on its most
interesting parts (see Franch et al. [2000] for a full version in OBJ-3). To simplify
the final product, we introduce a new private operation to add pairs <key, value>
with its shortcut, insert_sc: store key value shortcut → store. We need two
error expressions (see fig. 3, expressions 1 and 2), to avoid key or shortcut rep-
etition (the first error coming from Booch’s definition, the second one coming from
our approach). Note the absence of the commutative equation over insert that
appeared in the store without shortcuts (section 3). This is due to the fact that we
need now to maintain the ordering of insertions to distinguish different shortcuts; in
other case the following property would hold:
last_sc(insert_sc(insert_sc(A, k, v, q), k’, v’, q’) = last_sc(insert_sc(insert_sc(A, k’, v’, q’), k, v, q)
which is obviously wrong.

In order to obtain shortcuts for the store, we introduce another private op-
eration new_sc: store → shortcut which is the one responsible to associate a
shortcut to a new pair entering in the store. Then, we can bound the public insert
operation with the private insert_sc one:

(E1) insert(A, k, v) = insert_sc(A’, k, v, new_sc(A))

where A’ will be defined later.

 sorts store, shortcut
 operations create, insert, remove, retrieve and defined? as in
fig. 1

last_sc: store → shortcut
remove_sc: store shortcut → store
retrieve_sc: store shortcut → value
defined_sc?: store shortcut → bool
modify_sc: store shortcut value → store
key_for_sc: store shortcut → key
sc_for_key: store key → shortcut
eq_sc: shortcut shortcut → bool

Figure 2: Public signature of an ADT for stores with shortcuts

Franch & Marco 261

A point is worth to be mentioned: as far as insert_sc is not commutative,
insert is not commutative also. This is really a difference in the underlying model, but in
fact it does not impact on the practical use of the type. Changing to another type of
semantics, as we mention in the future work (section 7) would solve this problem.

The simplest policy to generate new shortcuts would consist in obtaining the
shortcut successor of the last generated one. However, this criteria works not well
when removals are taken into account, because removals set free previously gen-
erated shortcuts. Although from the specification point of view we could reject the
possibility of reusing these shortcuts, we decide not to do that, because feasible
implementations of the ADT will need to reassign released shortcuts in further
insertions (to avoid holes in the underlying data structure). The specification of
new_sc results in (see Figure 3, equations from 3 to 5): if there are no shortcuts to
reassign, the new shortcut is the next of the last generated one; if there is at least
one shortcut to reassign, it is the last released one.

We should mention that reassignment conveys a danger: it is impossible to be
sure that all the users of a store having copies of the reassigned shortcut are aware
that the pair bound to the shortcut has changed; it could be the case of accessing
the store by means of a copy of the shortcut created before its last assignment. In
fact, it would be not difficult to take care of this, adding new operations on the
ADT to create and destroy copies of shortcuts in a controlled way; however, we
have decided not to do that because the same problem arises when considering
keys instead of shortcuts, and usually this situation is not explicitly handled in usual
container-like ADTs.

To specify the auxiliary operations appearing in these two equations, we need
to keep track of released shortcuts, with the help of a new operation mark_sc:
store shortcut → store. Marks appear when items are removed (either by key or
by shortcut) and disappear only when the shortcut is assigned again, by means of
an unmark_sc: store shortcut → store operation. These operations are speci-
fied in Figure 3, equations from 6 to 15.

The unmark operation plays an important role also when considering inser-
tions. In equation (E1), the store A’ should eliminate any remaining mark of the
new shortcut, just in case it were a released shortcut. This is necessary to maintain
the consistence of the store with respect to the state of shortcuts. So, equation
(E1) takes as final form:

(E1) insert(A, k, v) = insert_sc(unmark_sc(A, new_sc(A)), k, v, new_sc(A))
The rest of the specification is straightforward.

SEMANTICS OF THE ABSTRACT DATA TYPE STORE
WITH SHORTCUTS

As we already expected, the initial model of the ADT with shortcuts is differ-
ent from the one without them. We are going to fix this model concerning the

262 Adding Alternative Access Paths to Abstract Data Types

algebras bound to the sorts of interest, store and shortcut. As far as we are
working in the initial semantics framework, we are going to identify which are the
terms representative of the classes in the quotient-term algebra (of the appropriate
sorts), then we will formulate the model and we will establish the correspondence
between the representative terms and the values of the model.

Model of STORE for the sort store
Given the equations of the type, the equivalence classes of the quotient term

algebra will include combinations of the operations insert_sc and mark_sc over
the empty store. Arbitrarily, we choose as representative of a class any of the
terms with the marks appearing after insertions:

trepr ::= mark_sc(...(mark_sc(
 insert_sc(...(insert_sc(create, k1, v1, q1), ..., kn, vn, qn),

 qn+1), ..., qr)

1) error [defined?(A, k) = true] => insert_sc(A, k, v, q)
2) error [defined_sc?(A, q) = true] => insert_sc(A, k, v, q)

3) new_sc(create) = first_sc
4) [holes?(insert_sc(A, k, v, q)) = false] =>
 new_sc(insert_sc(A, k, v, q)) =
 = next_sc(last_sc_generated(insert_sc(A, k, v, q)))
5) [holes?(insert_sc(A, k, v, q)) = true] =>

new_sc(insert_sc(A, k, v, q)) =
 = last_sc_released(insert_sc(A, k, v, q))

6) remove_sc(insert_sc(A, k, v, q), q) = mark_sc(A, q)
7) remove(insert_sc(A, k, v, q), k) = mark_sc(A, q)
8) [eq(k, k’) = false] => remove(insert_sc(A, k, v, q), k’) =

= insert_sc(remove(A, k’), k, v, q)
9) [eq_sc(q, q’) = false] => remove_sc(insert_sc(A, k, v, q), q’) =

= insert_sc(remove_sc(A, q’), k, v, q)
10) [eq_sc(q’, q) = false] => insert_sc(mark_sc(A, q’), k, v, q)

= mark_sc(insert_sc(A, k, v, q), q’)
11) error insert_sc(mark_sc(A, q), k, v, q)

12) unmark_sc(create, q) = create
13) unmark_sc(insert_sc(A, k, v, q’), q) =

= insert_sc(unmark(A, q), k, v, q’)
14) unmark_sc(mark_sc(A, q), q) = unmark_sc(A, q)
15) [eq_sc(q’, q) = false] => unmark_sc(mark_sc(A, q’), q) =

= mark_sc(unmark_sc(A, q), q’)

Figure 3: An excerpt of the specification of an ADT for stores with
shortcuts

Franch & Marco 263

such that: i, j: 1 <= i, j <= n: (i <> j => not eq(ki, kj)) ∧
 i, j: 1 <= i, j <= r: (i <> j => not eq_sc(qi, qj))

The parameters ki and vi, 1 <= i <= n, are the pairs <key, value> in the store,
while qn+1, ..., qr are all the released (and not reassigned) shortcuts.

It is clear that the model must include information about the correspondence
between keys and values, and keys and shortcuts, and also the knowledge about
which are the released shortcuts. So, we formulate as the carrier set correspond-
ing to the sort store:

STOREstore ::= (K → V) × (K ↔ A) × A* satisfying that
 (g, h, s)∈ STOREstore:

dom(g) = dom(h) ∧
s ∩ ran(h) = Ø ∧
s ∪ ran(h) = [first_sc, next_scn(first_sc)]

being n = || s ∪ ran(h) || - 1, being next_scn(first_sc) the application n times of
next_sc on first_sc, and being A, K and V the carrier sets of shortcuts, keys and
values, respectively. We mix sequences and sets when using ∪ and ∩ with an
intuitive meaning. The first function maps keys to values, the second one binds
keys and shortcuts with a bijection (as required by the uniqueness property),
while the sequence keeps track of released shortcuts. As the specification obliges
shortcuts to be reassigned in reverse order of release, the sequence must be seen
as a stack. We could think of not fixing which is the shortcut to reassign. However,
in the initial semantics framework, we are obliged to determine the concrete reas-
signment policy to avoid inconsistences collapsing some of the carrier sets in-
volved in the model (for instance, we could demonstrate the equality of two differ-
ent values). In section 7, as future work, we mention the possibility of moving to
other semantics providing a higher degree of flexibility.

The correspondence between the carrier set of STOREstore and the repre-
sentative term trepr of the classes in the quotient-term algebra of STORE is estab-
lished as:

trepr ↔ (g, h, s) such that: s = qr . qr-1 qn+1 . λ ∧
 dom(g) = dom(h) = {k1, ..., kn} ∧
 i: 1 <= i <= n: (g(ki) = vi ∧ h(ki) = qi)

The operations of the ADT can be defined in terms of this carrier set; for
instance, the interpretation of modify_sc(A, q, v), being (g, h, s) the model of A,
requires qÎran(h) and redefines the function g in the point h-1(q) such that g(h-

1(q)) = v.

Model of STORE for the Sort shortcut
On the other hand, the carrier set for the sort shortcut is any domain isomor-

phic to the quotient-term algebra for this sort. Given the absence of equations
establishing relationships between the constructor operations for shortcut, the

264 Adding Alternative Access Paths to Abstract Data Types

quotient-term algebra for the sort shortcut is characterised by having as carrier
set the equivalence classes [next_scn(first_sc)], n >= 0. Among them, we re-
mark the domain of natural numbers; in this case, the operations can be inter-
preted in the following way: 0, the interpretation of first_sc; +1, the interpretation
of next_sc; and =, the interpretation of eq_sc. So, we can consider natural num-
bers as a valid model of shortcuts.

IMPLEMENTING THE ABSTRACT DATA TYPE
STORE WITH SHORTCUTS

We focus in this section in the efficient implementation of stores with short-
cuts. In fact, we are interested in determining the representation of the sorts, be-
cause the code for the operations can be derived automatically from it (we have
done it [Marco & Franch, 1997]).

The essential point consists on adding a mapping from shortcuts to pairs
<key, value> in the new ADT, while reusing the old ADT substituting values by the
shortcut that identifies them. This is precisely a point worth mentioning that makes
our approach different from other existing ones, as LEDA and STL: shortcuts can
be added to any given implementation of the ADT, without any kind of restriction.
In Franch et al. (2000) is presented an implementation in Ada 95 that takes profit
of the generic mechanism to implement this idea.

Then, the representation of the store has three parts (see Figure 4). First, we
consider the existence of an array SC of N positions to implement the mapping
between shortcuts and pairs <key, value>. So, we implement shortcuts with natu-
ral numbers that indexing the array. The cells of SC will contain for the moment the
pairs <key, value>.

On the other hand, the free positions of the array (those ones representing
undefined shortcuts) will be managed as a stack. This stack has two parts: the
upper one, containing the free shortcuts used before, in reverse order of release;
and the lower one, containing shortcuts not used before, in increasing order of
natural numbers. In fact, this kind of free space management is the usual one in
chained data structures implemented with arrays (Aho et al., 1983; Horowitz et
al., 1994), with an O(1) complexity.

Last, we reuse the given implementation of stores (hashing tables, AVL trees,
etc.), passing the shortcuts as values bound to the keys. As a result, given a key,
we obtain the shortcut with the efficiency of the former implementation and, if
necessary, we can use it to recover the corresponding value in constant time.
Therefore, the cost of all the previous operations is maintained. It is worth noting
also that the data structure is robust with respect to movements of the keys in M
(for instance, when deleting in an open addressing hashing table).

Franch & Marco 265

The operations accessing and not modifying the store by means of the short-
cut are O(1), which was one of our goals. On the other hand, the operations
accessing by key, or accessing by shortcut but modifying the store, have a com-
plexity that depends on the underlying implementation of M; the important fact is
that this complexity does not get worst with the addition of shortcuts. On the other
hand, the representation needs N*(space(shortcut)+space(key)) extra space.
However, even this waste will generate a later saving of space, when shortcuts
substitute keys (generally strings, which require most space than a shortcut).

Instead of the array SC, dynamic memory could have been used to store the
pairs <key, value>. In this case, released shortcuts (i.e., pointers) would be man-
aged directly by the memory allocator. The main consequence is that we can not
assure that they are recycled with the chosen policy stated in the specification. A
way to handle this problem would be to incorporate in the specification the memory
allocator policy itself. In any case, this difference has not practical consequences.

CONCLUSIONS AND FUTURE WORK
We have presented a proposal aimed at reconciling two usually contradic-

tory criteria in the ADTs framework: modularity and efficiency. To do this, we add
a new type to implement the concept of shortcut as alternative path access to
elements in the ADT, and we add many new operations to make proper use of
shortcuts. Shortcuts are interesting because, besides of assuring O(1) access time
to elements in the ADT, they present some nice properties: they are abstract (in-
dependent of the implementation of the ADT), persistent (movements inside the
data structure do not affect them), secure (meaningless accesses are not possible)
and they preserve behaviour (the new ADT behaves as the old one, and the

Fig. 4. A valid state of the implementation for stores with shortcuts

����������
����������
����������

���������
���������
���������

����������
����������
����������

0 7

SC

Accessing with shortcut

start of free
shortcuts stack

start of non-generated
shortcuts area

M

k1
 v1

k2
 v2

k3
 v3

k2 k1 k3

Accessing with key

Figure 4: A valid state of the implementation for stores with shortcuts

266 Adding Alternative Access Paths to Abstract Data Types

efficiency of the former operations keep the same). These properties are the ones
that distinguish clearly shortcuts from low-level concepts as pointers or cursors.

We have developed our work studying a concrete ADT, the store of items,
writing down an algebraic specification for the type, identifying its mathematical
model (which behaves in a predictable manner), and proposing an adequate (effi-
cient) implementation for it. We would like to remark that most of our work can
be applied to every other container-like ADT.

Concerning future work, there are two main lines of research. On the one
hand, we are working on expressing our proposal in a generic manner (that is,
suitable for a wide variety of ADTs with arbitrary implementations), with the same
level of formalism as the one outlined here. To do this, we are defining a
parameterised ADT which retains the most fundamental common properties of a
wide variety of containers (in fact, the container itself acts as parameter), so that
we can reformulate the methodology on it.

On the other hand, we want to study if other formal frameworks are more
adequate than initial semantics. As it has been already pointed out, initial seman-
tics forces us to determine in a precise manner which shortcuts are the ones as-
signed to new elements, and this is the reason why we have obtained a large
specification which also suffers from implementation bias. For instance, the op-
eration new_sc could be specified instead with the single equation defined_sc?(A,
new_sc(A)) º false, which states that the shortcut assigned to a new pair must not
be already assigned in the current store, but without fixing the assignment policy.

ACKNOWLEDGEMENTS
This work is partially supported by the spanish research programme CICYT

under contract TIC97-1158.

REFERENCES
Aho, A., Hopcroft, J. and Ullman, J. (1983). Data Structures and Algorithms.

Reading, MA: Addison-Wesley.
Booch, G. (1987). Software Components with Ada (second edition). The Ben-

jamin/Cummings Publishing Company Inc.
Brassard, G. (1985). Crusade for a better notation. SIGACT News, 16(4).
Cormen, T. H., Leiserson, C. E. and Rivest, R. L. (1990). Introduction to Algo-

rithms. MIT Press.
Ehrig, H. and Mahr, B. (1985). Fundamentals of Algebraic Specification, 1.

Springer-Verlag.
Franch, X. and Marco, J. (2000). Adding alternative access paths to abstract

data types. Technical Report LSI-00-1-R, Universitat Politècnica de Catalunya.

Franch & Marco 267

Goguen, J., Thatcher, J. and Wagner, E. (1978). An initial algebra approach to the
specification, correctness and implementation of abstract data types. In Yeh, R.
(Ed.), Current Trends in Programming Methodology. Englewood Cliffs, NJ:
Prentice-Hall.

Goguen, J. A. and Winkler, T. (1988). Introducing OBJ-3. Technical Report
SRI-CFL-88-9, August.

Horowitz, E. and Sahni, S. (1994). Fundamentals of Data Structures in Pas-
cal (fourth edition). Computer Science Press.

Knuth, D. (1976). Big Omicron and big Omega and big Theta. SIGACT News,
8(2).

Knuth, D. E. (1998). Sorting and Searching (second edition). Reading, MA:
Addison-Wesley.

Liskov, B and Guttag, J. (1986). Abstraction and Specification in Program
Development. MIT Press.

Marco, J. and Franch, X. (1997). Shortcuts: Abstract pointers. Technical Re-
port LSI-97-25-R, Universitat Politècnica de Catalunya.

Marco, J. and Franch, X. (2000). Reengineering the Booch component library. In
Proceedings International Conference on Reliable Software Technologies
- Ada Europe’00, LNCS 1845, Postdam (Germany), June.

Mehlhorn, K. and Näher, S. (1999). The LEDA Platform of Combinatorial
and Geometric Computing. Cambridge University Press.

Musser, D. R. and Saini, A. (1996). STL Tutorial and Reference Guide. Read-
ing, MA: Addison-Wesley.

268 Relational Data Modeling for Geographic Information Systems

Chapter 19

Relational Data Modeling
for Geographic Information

Systems

Lawrence A. West, Jr.
University of Central Florida, USA

Brian E. Mennecke
East Carolina University, USA

This chapter addresses data modeling problems inherent in the use of
geographic information systems (GIS) that are not adequately covered by
traditional modeling techniques. GIS technology has only recently begun to
be used for traditional system development by large numbers of organizations
and there are few procedures for modeling GIS data and applications in a
business context. This circumstance is partially a result of the fact that GIS
developers have traditionally been knowledgeable end users or facilitators
and they have generally been called on to build standalone systems, often
for their own use. This paper discusses geographic systems and proposes
relational modeling techniques that document organizational data integrity
rules when systems that include spatial data are developed for more
widespread use.

Data modeling is an effective design and communication tool associated
with the development of relational databases and associated applications. A

Previously published in the Journal of Database Management, vol.10, no.2, Copyright © 1999, Idea Group
Publishing.

West & Mennecke 269

fully developed data model includes a rich set of information on tables; fields;
relationships, and, most importantly, the organization’s business rules. Data
models facilitate communication between developers and clients and, in
modern development environments, CASE tools can be used to translate
many model specifications directly into the physical database. Whether
implemented in the physical database or enforced at the application level, the
vision of the relationship between data and its uses that are expressed in the
data model becomes a crucial contributor to the usability of the resulting
database and suite of applications.

This paper addresses a data modeling problem inherent in the use of
geographic information systems (GIS) which is not adequately covered by
traditional modeling techniques. GIS are computer-based systems designed
to capture, store, integrate, update, modify, create, display, and analyze
geographic data. Though businesses and governments have used GIS technol-
ogy for decades, it has only recently begun to be used for the development of
databases and systems of the sort for which data modeling is appropriate. This
situation is partially a result of the fact that GIS developers have traditionally
been knowledgeable end users or facilitators who have been called on to build
stand-alone systems for experienced end users, not “enterprise-wide systems”
or systems for use by decision makers not familiar with GIS technology.
Changes in these patterns have made the modeling issue much more impor-
tant, yet we still lack standards for representing and communicating the use
of and relationships between tables when one or more contain geographic
coverages.

The goal of this paper is to suggest techniques for modeling relational
databases that include a mix of both traditional tables and spatial coverages
so that traditional business rules and data integrity rules can be documented
for spatial databases. To accomplish this goal, the next section begins by
defining several of the relevant terms used in the GIS field. Next, we discuss
the important characteristics of spatial data and several of the modeling
problems that are inherent in working with this data. After establishing the
foundations for differences between spatial database systems and conven-
tional relational systems, existing work in the field is discussed leading to the
conclusion that there is no established modeling technique for GIS-based
database systems. Following this discussion, two sections present a method-
ology for modeling spatial relationships as part of a comprehensive data
model. The first of these sections addresses graphical representations of
spatial entities and relationships, while the second covers modeling data
integrity rules in spatial relationships. The paper concludes with a discussion
of the implications of GIS technology in mainstream systems.

270 Relational Data Modeling for Geographic Information Systems

Figure 1: Coverage Data

GIS TERMINOLOGY
Because some MIS researchers may be unfamiliar with GIS technology

and the unique terminology used by its developers and users, this section
includes several important terms and definitions.
GIS—Geographic Information System. Commonly used to mean the soft-

ware that enables the display and manipulation of geographic data.
Examples include ArcView, MapInfo, etc. This software is the counter-
part to a database management system package prior to its application to
a collection of data.

Geographic System (GS)—This term is introduced here to indicate a system;
a collection of applications, data, procedures, personnel, etc.; which has
a geographic component to it. This component would include, as a
minimum, one or more data sets containing spatial data and a spatial
database engine such as is found in GIS software. These systems could
potentially have any of the attributes of any other computer-based
information system plus the geographic component.

Coverage—A coverage in a GS is the counterpart to a table in a conventional
database. Coverages are collections of records, with at least two parts
having a 1:1 correspondence between records (Figure 1). One part is the
description of an object’s location in a coordinate system used by the GIS
with typical coverage types including point (addresses and street lights),
line (roads, streams, and utility lines), and polygon (political boundaries,
sales territories). The second part is attribute data of the same type as is
used in conventional DBMS. The attribute data is usually stored in a table
having all of the properties of any ‘traditional’ table plus a key field
linking each record in the attribute data to its appropriate spatial object.

West & Mennecke 271

Good database design dictates that these attributes are about the objects
represented in the coverage as would be accomplished by an appropriate
level of normalization. Other terms for coverage include layer or theme.

Table—A GS can include both coverages and attribute data tables (tables not
having corresponding spatial objects). In this paper ‘table’ will be used
to mean a table not part of a coverage while a coverage table will refer to
the attribute data of a coverage. This distinction will be important in later
discussion.

Spatial Entity —Just as an entity is the modeling counterpart to a table, a
spatial entity is the modeling counterpart to a coverage.

Data Model—The data model is all documentation pertaining to the database
used by the system. It includes table and field specifications and all types
of data integrity rules.

Graphical Data Model —The graphical data model (GDM) is a subset of the
data model which graphically depicts entities and their relationships.
Depending on model complexity and preferences the GDM may depict
all fields in each table, just tables and primary and foreign keys, or just
table names. Relationships may be shown with cardinality and descrip-
tive text or just with depictions of their existence. At a minimum, the
GDM will show each coverage, table, and relationship in the data model.

Object—In GIS an object is the counterpart of a record in a conventional
RDBMS table. One object is one thing that has a spatial location and
descriptive (attribute) data. When used in this context, ‘object’ is not to
be confused with objects in object-oriented programming. However,
some GIS do use an OOP approach and spatial records may also be
objects from a programming sense.

WORKING WITH SPATIAL DATA
In traditional database designs, relationships are formed between entities

when the primary key of one entity serves as a foreign key in another. Multi-
table queries are almost always made along these paths using joins to select
records in one table with key values matching selected records in another.
These relationships are modeled using a number of techniques.

In a GIS, a new kind of join called the spatial join, is possible. The GIS
engine is ‘aware’ of the area occupied by objects (records) in coverages and
is able to tell when a record in one coverage overlaps the area occupied by a
record in another. Furthermore, while joins in conventional systems typically
test for equality of key values, spatial joins can be accomplished using a
number of different criteria. Keywords in spatial joins include, “intersect,”

272 Relational Data Modeling for Geographic Information Systems

“are completely within,” “completely contain,” “have their center in,” “near-
est,” “contain the center of,” and “are within distance of” (Berry, 1993).
Finally, GIS loaded with appropriate matchable street themes have the
capability of estimating the x-y coordinates of a matchable object such as a
street address.

With these capabilities, queries such as the following are possible:
• Select all customers whose addresses are within one mile of the store’s

location.
• Select the nearest store to a customer’s location.
• Select the hospital emergency room which is closest to 123 Elm Street

and which has a cardiac intensive care unit.
• Select all customers which live within 1/2 mile of any road of class 3 or

above passing within 1/2 mile of the store’s location.
• Select all employees whose zip codes fall within the service area of the

XYZ HMO.
These capabilities highlight the modeling problem addressed by this

paper. When there are two geographic coverages in a system, there is
automatically a relationship between them. No matter where the coverages lie
with respect to each other, a “Select the Nearest…” query will yield related
records. When the coverages overlap spatially, then any of the spatial join
types can be expected to yield related records. Furthermore, since the GIS
engine is able to manage these relationships these systems do not provide
relationship objects found in modern RDBMS. Instead, as Smith et al. write,
“In a GIS, geometric and topological relations exist between the different
geographic entities, be they points, lines or regions. There are so many
potential relations that it is not possible to store them entirely explicitly within
the system” (Smith et al., 1987).

Since any two coverages are automatically related, it is essential that the
database designer distinguish between accidental relationships and those
relationships having fundamental importance to the use of the system.
Further, when spatial relationships are part of the system, rules for maintain-
ing data integrity, especially rules enforcing standards for ‘orphaned’ records
(insert and delete rules) must be established. Finally, the modeling technique
must provide for the representation of ‘traditional’ data in the system. An
overall approach for modeling data in a GS requires methods for:
• Representing spatial coverages
• Distinguishing between intended and incidental relationships between

coverages
• Documenting the characteristics, including data integrity rules, of spatial

relationships

West & Mennecke 273

• Documenting relationships between coverages and conventional (non-
spatial) tables

• Documenting business rules pertaining to spatial locations

PREVIOUS WORK
The history of relational data modeling begins with Codd (1970) and

Chen (1976) and is well known in the MIS field. While several refinements
and alternative techniques have been suggested over the years, their details are
incidental to the main point here and will not be discussed further. The
graphical illustrations presented in this paper will use the modeling technique
presented by Flemming and von Halle (1989) because its compact presenta-
tion better suits the limited space in a journal format. The same models could
easily be constructed with the Chen technique.

Work specifically discussing the use of relational data models in GIS
comes from the fields of computer science and can be generally characterized
as being focused on the internal representation of the spatial data rather than
on the relationships between coverages as discussed above. Each record or
object in a spatial coverage consists of both attribute and spatial data (Figure
1). In the case of polyline or polygon coverages the spatial data is stored as
either an ordered list of points defining the vertices of the objects (vector data)
or as a collection of all the points making up the area of the object (raster data).
These collections can themselves have attributes such as color, direction, or
elevation and managing these ‘sub-data’ elements and their association with
the record has been a matter of considerable interest.

An early paper by Freeman (1975) discusses relative locations of objects
forming a picture and introduces a calculus using terms such as ‘BELOW’ or
‘BETWEEN.’ His discussion pertains to graphics in general, however, not
just to geographic data and does not address the relationships between tables
or even relational tables.

Several papers discuss the internal representation of spatial data. Worboys,
Hearnshaw, and Maguire (1990) discuss an object-oriented model for repre-
senting both the internal elements of spatial data (coordinates of nodes, etc.),
the relationship between coordinate data and the attribute data, and the
relationship between what we are calling different spatial coverages. Van
Roessel (1987) and van Roessel and Fosnight (1984) discuss the design of a
relational data model for spatial data to facilitate the exchange of data between
systems. As with Maguire’s work, though, they focus on the relationships
between elements of a spatial object and the object itself. That is, much of this
work focuses on techniques for storing the attribute and spatial data in a

274 Relational Data Modeling for Geographic Information Systems

unified system. Shekhar et al. developed an object oriented (from an OOP
perspective) model for capturing a rich set of attributes about geographic data,
including a rich capability for modeling time series data related to spatial
objects.

Armstrong and Densham (1990) come closest to the theme of this paper
in their analysis of database organizational strategies for spatial decision
support systems. They develop a model of data representation that focuses on
both the internal representation of spatial data and the relationship between
spatial and non-spatial entities in a comprehensive model. Their conclusion,
though, is that an extended network model is the most appropriate for creating
systems of this type. Unfortunately, implementing their model requires that
the database engine integrate the spatial data and additional data into one
internal schema and is likely to create problems when attempting to link
organizational data in an existing RDBMS.

Previous work suffers from one or both of two weaknesses with respect
to the types of geographic systems proposed here. First, the work does not
discuss the relationship of spatial data to non-spatial data in an enterprise-
wide database. While many authors address the accuracy of geographic data
and some address the accuracy of attribute data none discuss business rules
of the sort commonly implemented in conventional database systems. Sec-
ondly, the work presumes the flexibility of designing customized data
structures and a corresponding database engine to operate on the data. In an
environment where business and government systems are developed using
standard software packages and development languages, the system designer
is more likely to be faced with an environment characterized by:
• Internal representation of the spatial data given by the selected GIS

software package, and;
• Relational representations of attribute data due to the popularity of this

data structure in both GIS software packages and for existing organiza-
tional DBMS.
It follows, then, that an approach that is familiar to developers and that

is consistent with the capabilities of off-the-shelf GS development tools will
be useful for production geographic systems in the foreseeable future. The
next two sections present such an approach.

ILLUSTRATING SPATIAL DATA IN A GIS
This section covers techniques for illustrating spatial and non-spatial

data in a graphical data model. The discussion includes techniques for
illustrating and identifying spatial coverages and for illustrating and identify-
ing spatial relationships.

West & Mennecke 275

Illustrating Spatial Coverages
When a system includes both conventional tables and spatial coverages,

the illustration should clearly distinguish between these two data structures
and it should allow the user to see the class of objects in each coverage. These
goals may be accomplished by taking the following steps.
1. Use a large rectangle or other shape as a metaphor for the ground and

place coverage entities inside this area. Entities shown outside this area
will be implemented as conventional tables rather than coverages. In the
case of complex or multi-page GDMs where all of the coverage shapes
cannot reasonably be drawn in proximity to each other, the spatial
indication boundary can be repeated in multiple parts of the GDM. It
would be understood that each of these individual areas is actually
representing the entire spatial area of interest.

2. Annotate each spatial entity with a symbol to indicate the type of objects
it contains. Symbols should be easy to construct with any graphics
program capable of creating the basic symbology of the GDM itself and
should bear some resemblance to the type of object being represented.
Table 1 contains proposed symbology for representing coverage types.
Figure 2 illustrates the application of these principles in a simple GDM

Table 1: GDM Coverage Type Symbology

Symbol Meaning Examples
 <> Polygon Political boundary, service area, property

boundaries, zoning designations

 <><> Complex Polygons with multiple areas constituting
Polygon the same logical object, donut-shaped

objects, etc.

 /\/ Line or Roads, power lines, rivers
Polyline

x, y /\/ Matchable A coverage which contains street networks
address layer along with the information which will

enable the system to determine the approxi-
mate x, y coordinate of an address.

123∅ • Address A point coverage which has been produced
Table from conventional records which have been

converted to a coverage using a matchable
address layer

 • Point Street address, telephone pole, accident
site, fire hydrant

x, y ,∅ • Event A conventional table in which one attribute
Table contains the x coordinate address of a point

in the GIS’s coordinate system and another
attribute contains the y coordinate. Such
tables can be converted to coverages by
many GIS.

276 Relational Data Modeling for Geographic Information Systems

Figure 2: Spatial Entities in a GDM

for a property insurance company and Appendix A includes more of the
symbology in a more comprehensive GDM. The relationship between the
sales representatives and sales territories is shown in the traditional manner
but no relationships, other than the collective identification as spatial cover-
ages, have yet been illustrated between the coverage entities. These relation-
ships will be discussed and modeled next. Each sales representative is
assigned exclusive rights to one sales territory and so sells all policies insuring
property falling within his/her territory. Sales territories are represented as
polygon coverages and insured property is shown as an address table for
which spatial coordinates were derived from street addresses and a matchable
address coverage.

Illustrating Spatial Relationships
As discussed previously, the inclusion of spatial coverages in a bounding

box illustrates the natural spatial relationships that exist between records in
any two coverages sharing a common coordinate system. It is likely, however,
that referential business rules similar to those applied to relationships be-
tween conventional tables may apply to relationships between geographic
coverages as well. A method must be adopted to distinguish between the
‘accidental’ relationships that exist between all spatial coverages and in-
tended relationships that implement some business rule of the organization.

For example, if it is company policy that each covered address be

West & Mennecke 277

Figure 3: Spatial Relationships in a GDM

serviced by the sales representative for the territory in which the property lies
this rule may be illustrated by specifying the relationship explicitly in the data
model. This rule corresponds to a traditional one-to-many relationship
between tables except that there is no explicit primary key-foreign key link to
establish the relationship. In another case, rates for fire policies may be based
on the distance from the insured property to the closest fire hydrant.

Illustrating intentional relationships between coverages in a geographic
system can be accomplished by connecting each coverage in the relationship
with a line. Annotate the line with a short descriptive name and the cardinality
of the relationship. Alternatively, the relationship could include the relation-
ship set diamond symbol from Chen (1976). Figure 3 shows an extension of
the GDM with intended geographic relationships illustrated. Note that the
hydrant coverages is shown as an event theme. The data may be obtained from
utility companies that often survey hydrant, utility pole, manhole, and other
locations with global positioning systems (GPS) that record latitude and
longitude measures for object locations.

DOCUMENTING SPATIAL DATA INTEGRITY RULES
This section covers the enforcement of data integrity rules as they pertain

to spatial coverages. While many of these rules are similar to those found in
conventional database design the spatial aspects of the data present some
additional challenges to the designer. These challenges are in the area of
enforcing existential integrity, referential integrity, and triggering operations
and occur because, unlike conventional database systems, there are, as yet,

278 Relational Data Modeling for Geographic Information Systems

Coverage: SalesTer
Type: Polygon
Description: Each record describes one sales territory in

which a single sales representative can is-
sue policies.

Unique?: Yes
Complete?: No

Figure 4: Documenting Spatial Uniqueness & Completeness

few provisions for enforcing data integrity rules in GIS. The specific problems
and suggested approaches are presented below.

Documenting Existential Integrity Rules
Existential integrity in conventional systems requires that each record be

unique. This requirement is enforced by guaranteeing the uniqueness of the
primary and alternate keys of each record in a table and the existence of values
in each field of a primary key (nulls are not allowed). Spatial coverages may
have the same rules for their attribute data, but must also consider the spatial
uniqueness and completeness of each record. Since the enforcement of rules
in these areas will vary within the application, or even between coverages in
the same database, these rules must be specified at design time and enforced
within the database or the using application.

Spatial uniqueness determines whether a record in a coverage is allowed
to overlap the area occupied by another record in the same coverage. For
example, in a polygon database containing the legal descriptions of property
records, it is not legal for the area of one parcel of land to overlap the area of
another. Each area of land must be within a unique parcel and each parcel must
have an ownership status. On the other hand, a polyline coverage mapping bus
lines in a city may have different routes intersecting or occupying the same
streets on portions of their routes.

Spatial completeness determines whether or not records in a polygon
coverage must completely fill the bounding area of the coverage. In the
property records mentioned above, it would make no sense to have an area of
land not belonging to a legally described parcel. Such an area would be
ownerless; therefore, the system must enforce the completeness of the
coverage. On the other hand, it would be acceptable for a coverage of city
boundaries to have gaps in it representing unincorporated areas of a county.

Because coverages may only have one spatial attribute, uniqueness and
completeness applies to the coverage as a whole and may be specified in the
coverage description area of the coverage’s entry in the data dictionary. It

West & Mennecke 279

Figure 5: Sample Documentation for a Spatial Relationship

would be unlikely that point or line coverages would require complete
coverage but all coverage types could potentially require unique (no overlap)
coverage. Figure 4 illustrates an example page header for a coverage’s entry
in the data dictionary.

Documenting Referential Integrity
It is also necessary to document the nature of each intended spatial

relationship in the data dictionary. This documentation should include con-
ventional referential integrity rules for the relationship (insert and delete
rules) as well as any spatial restrictions on the nature of the relationship. These
spatial restrictions may be thought of as rules that must be enforced by the GIS
engine.

These rules must be derived from the spatial selection capabilities of the
GIS engine as it is the engine that must perform validity checking on the
spatial objects. For example, according to the example business rules given
earlier the relationship between SalesTer and Insured Property in Figure 3
would be a “Lies Within” relationship. All Insured Property locations must
lie within an existing company sales territory. On the other hand, the company
may have a rule that says that new customers are automatically assigned to the
closest sales representative as determined by their sales territories. With this
rule, customers will automatically be assigned to the appropriate sales
representative if they happen to live within an established sales territory, but
will be assigned to the closest representative if no territory contains their
address. Figure 5 illustrates the relationship documentation for the relation-
ship between the SalesTer and District entities.

280 Relational Data Modeling for Geographic Information Systems

User Rule: Policy rates will be calculated based, in part, on the
distance of the proposed insured property from an
existing fire hydrant and from an existing fire station.

Event: Insert, Update
Entity: Policy
Attribute: Policy*Rate
Condition: [Exact calculation is omitted]
Action: Update the policy rate

Figure 6: Documenting Triggering Operations

Documenting Triggering Operations
Triggering operations (or triggers) are data integrity rules that may not be

specified using the earlier methods. Triggers frequently require calculations,
reference to additional fields (other than primary or foreign keys), or summa-
ries of values in multiple records for determining the validity of a proposed
action.

Actions requiring integrity enforcement through triggering operations
are common when dealing with geographic records. One example of a trigger
could be created by an ordnance that prohibits certain land use (e.g., liquor
stores) within a specified radius of property designated for a different use
(e.g., schools). While it is simple to detect whether or not an object exists
within this radius, reference must be made to additional information to
determine the two types of objects to enable detection of a violation of the trigger
condition.

Documentation for triggering operations on spatial data will resemble the
documentation for conventional data and may be specified with a number of
formats. The operation illustrated in Figure 6 uses the Rule-Event-Condition-
Action format presented by Flemming and von Halle (1989, Chap. 9).

IMPLICATIONS FOR SYSTEM DEVELOPMENT
The focus of this paper has been on identifying and documenting spatial

data integrity issues involved with geographic systems. The technical (and
therefore, practical) issues associated with implementing these rules is well
beyond the scope of this paper but there are some important ramifications to
the issues raised here. Foremost among these ramifications is the fact that
working with spatial data requires more computational power than traditional
database structures. As geographic systems are implemented in support of
applications (as opposed to standalone information systems) response time
issues will become more and more important.

West & Mennecke 281

Designers will need to be acutely aware of which transactions against the
system will invoke a spatial integrity check and will need to focus their
attention on those high frequency, important transactions made against large
spatial data sets. As with conventional systems, designers will need to
consider methods for enhancing performance. Indexing spatial coverages is
one method of speeding performance that is supported by many GIS. Other
techniques, such as dividing coverages into tiles or batch processing, may be
suitable.

A final consideration may involve redundant relationships between
tables and coverages. That is, relationships that may be implicit in existing
relationships may be duplicated by new relationships in order to avoid spatial
joins in high volume transactions. The relationship between SalesRep and
Policy illustrated in Figure A1 (Appendix A) is not needed as this relationship
can be traced through the SalesTer coverage and Insured Property. However,
some transactions may be faster by avoiding the spatial join. This technique
would only be practical with stable spatial selection criteria and relatively
stable data, but it would remove day-to-day processing from the GIS engine.

Finally, certain integrity rules may have implications for hardware and
software selection. If the system requires that spatial completeness be
enforced, for example, it will be necessary to ensure that the underlying GIS
software supports snap-to-object drawing and the detection of unassigned
areas and their conversion to objects.

CONCLUSIONS
GIS are becoming more popular for transaction processing, management

support, and decision support systems. As they become integrated with other
organizational systems, their design must reflect the same considerations for
data integrity protection found in other systems. This paper has presented a
methodology for identifying and documenting data integrity considerations
for geographic systems. The methodology is an extension of techniques
already in use and can be implemented with tools likely to be found in any
programming shop.

APPENDIX A: LOGICAL DATA MODEL
The graphical data model depicted in Figure A1 is a simple illustration

of many of the graphical techniques suggested in this paper. Examples of data
integrity rules illustrated in the paper were also drawn from this model. The
model is far from complete and is presented for illustration purposes only. As
with any data modeling effort, as all business rules are explored and incorpo-
rated the model becomes more complicated.

282 Relational Data Modeling for Geographic Information Systems

Figure A1: Graphical Data Model

A few brief notes about the model are presented below.
1. Note that relationships exist between SalesRep and Policy and between

Claims Agent and Claim, even though these relationships can be traced
through the spatial relationships. These relationships may be added for
two reasons:
a. Changes over time may require that the agent who sold a policy or

processed a claim be linked to the claim or policy while the
relationship established through the spatial relationship establishes
which agent processes new policies and claims.

b. The ‘conventional’ foreign key relationship is faster for the system
to process. If transaction analysis determines that linking from
SalesRep to Policy is a frequent or important join, then the redundant
relationship may be established.

2. Insured Property is shown as an address table. This table is a conventional
relational table that has had spatial coordinates added by looking up
addresses in a matchable street coverage. This street table is an important
part of the system’s operation, but is not shown as part of the GDM as it
is a utility coverage and the company does not use this table’s data
directly.

West & Mennecke 283

3. Note that there is no explicit relationship between many of the GIS
coverages even though they lie in the same area of interest. Again, the
modeling technique suggested here clearly distinguishes those spatial
relationships that are of interest from those that are not.

4. As models become more complete, and therefore more complex, it is
likely that they will span many pages or that it will be difficult to represent
all of the spatial entities in proximity to each other. As suggested in the
text, it may be necessary to break the spatial area of the GDM into
multiple sections in order to effectively illustrate all of the relationships.
This technique is not shown here.

REFERENCES
Berry, J. K. (1993). Beyond Mapping: Concepts, Algorithms, and Issues in

GIS. Ft. Collins, CO: GIS World Books.
Chen, P. P. S. (1976). The entity-relationship model: Toward a unified view

of data. ACM Transactions on Database Systems, 1(1), 9-36.
Codd, E. F. (1970). A relational model of data for large shared data banks.

Communications of the ACM 13(6), 377-387.
Flemming, C. and von Halle, B. (1989). Handbook of Relational Database

Design. Reading, MA: Addison-Wesley.
Freeman, J. (1975). The modeling of spatial relations. Computer graphics

and image processing 4, 156-171.
Shekhar, S., Coyle, M., Goyal, B., Liu, D. and Sarkar, S. (1997). Data models

in geographic information systems. Communications of the ACM, 40(4),
103-111.

Smith, T. R., Menon, S., Star, J. L. and Estes, J. E. (1987). Requirements and
principles for the implementation and construction of large-scale geo-
graphic information systems. International Journal of Geographical In-
formation Systems, 1(1), 13-31.

van Roessel, J. W. (1987). Design of a spatial data structure using the
relational normal forms. International Journal of Geographical Informa-
tion Systems, 1(1), 33-50.

van Roessel, J. W. and Fosnight, E. A. (1984). A relational approach to vector
data structure conversion. Proceedings, First International Symposium on
Spatial Data Handling. Geographical Institute, University of Zurich,
Zurich.

Worboys, M. F., Hearnshaw, H. M. and Maguire, D. J. (1990). Object-
oriented data modeling for spatial databases. International Journal of
Geographical Information Systems, 4(4), 369-383.

284 A Domain Class Model for Software Process Models

Chapter 20

Software Process Models are
Software Too:

A Domain Class Model for
Software Process Models1

Daniel Turk
Colorado State University, USA

Vijay Vaishnavi
Georgia State University, USA

A software process model describes a set of partially-ordered sequences of
activities that are carried out in order to accomplish certain goals. While
numerous process modeling approaches have been proposed over the years,
it seems that none of them have yet addressed the full range of concepts
described in this definition. Most focus on activities and activity ordering;
few, if any, focus on representing organizational goals and process
improvement. Most provide concrete implementation approaches; few, if any,
describe the general model(s) upon which these implementations are built.
This paper suggests a new approach for developing software process modeling
systems.
If “Software Processes are Software Too,” as suggested by Osterweil (1987),
then so are software process models, and hence there may be processes and
models that are used in regular software development that may be useful in
the process modeling domain as well. The paper focuses on the domain class
model as an example of one type of model that might be produced if an
approach such as the Unified Process were used in the process modeling
Previously published in Challenges of Information Technology Management in the 21st Century, edited
by Mehdi Khosrow-Pour. Copyright © 2000, Idea Group Publishing.

Turk & Vaishnavi 285

domain. Such a process, and the set of models produced by it, if used, may be
helpful in moving the process modeling field forward. While identifying the
conceptual needs of process modeling systems, these models leave totally
open the choice of how to formalize and implement actual solutions. A domain
class model for process models is developed as an example of one of these
models.

INTRODUCTION
A software process model describes a set of partially-ordered sequences of

activities that are carried out in order to accomplish certain goals (Curtis, Kellner,
& Over, 1992; Feiler & Humphrey, 1993). While numerous process modeling
approaches have been proposed over the years (Arbaoui & Oquendo, 1994;
Barghouti & Kaiser, 1992; Conradi et al., 1992; Curtis, Kellner, & Over, 1992;
Dowson, 1987, 1993; Engels & Groenewegen, 1994; Finkelstein, 1989;
Humphrey, 1989; Humphrey, 1995; Jarke et al., 1998; Kellner, Briand, & Over,
1996; Lehman, 1997; Paulk et al.,1995; Roland et al., 1995; Starke, 1994; Sutton
& Osterweil, 1997; Workflow Management Coalition, 1994), it seems that none
of them have yet addressed the full range of concepts described in this definition.
Most focus on activities and their ordering; few, if any, focus on representing
organizational goals and process improvement. Most provide concrete imple-
mentation approaches; few, if any, describe the general models upon which these
implementations are built. This paper suggests a new approach for developing
software process modeling systems.

In his landmark paper, Leon Osterweil (1987) stated that “software processes
are software too.” Thus was launched more than a decade of work whereby
software processes have been modeled as computer programs. The focus has
been on using computer languages, developing new ones or extending old ones, to
model software processes in an executable manner. This dynamic approach is
believed to allow better modeling of software development processes than more
static approaches can provide.

However, it seems that an important implication of Osterweil’s assertion has
gone largely unnoticed: If software processes are software too, and thus are
modeled by computer programs, then so are software process models, and
hence the processes used to develop regular software might be valuable to
use in developing process modeling software as well.

The Unified Process (Booch, Rumbaugh, & Jacobson, 1999; Rumbaugh,
Jacobson, & Booch, 1999; Jacobson, Booch, & Rumbaugh, 1999), and most
other approaches, suggest that in software development a number of models are
useful: domain, application, test, etc. The domain model describes in a system-

286 A Domain Class Model for Software Process Models

independent way 1) the requirements that a user will want the system to be able to
do for them, and 2) the general conceptual ideas or constructs in the domain of
interest and the interrelationships between these constructs. These two aspects of
the domain model, usually known as the requirements and class models, provide a
strong basis for building and maintaining correct, robust, and flexible systems. The
application model builds on the domain model and describes a specific solution
approach or design for a given application. If “process models are software too,”
then they should benefit from following a similar process and from the develop-
ment of such models for the process modeling domain.

This paper describes a domain class+ model for software process models that
was developed following such a process. Use cases were developed describing
requirements for process modelers. The domain class model was built based on
these requirements and a study of the process modeling literature, and a formal
process modeling language was specified and a prototype process modeling sys-
tem was built to demonstrate the feasibility, and to test the validity, of some of the
model’s key ideas.

In this paper we focus on the domain class model as an example of one type of
model that might be produced if an approach such as the Unified Process were
used in the process modeling domain. We believe such an approach, and the set
of models produced by it, if used, may be helpful in moving the field of process
modeling forward. While identifying the high-level concepts and interrelationships
of the process modeling domain, this domain class model leaves totally open the
choice of how to formalize and implement actual solutions. Other parts of our
research project focus on the requirements and application models, and on build-
ing executable process modeling systems.

A DOMAIN CLASS MODEL
A domain class model describes the key concepts in the domain of interest -

the constructs, their relationships, interactions, and behavior. In our case, the do-
main of interest is software development process modeling. This paper develops
such a domain model, and, in so doing, documents a conceptual PML (process
modeling language).

As identified above, numerous people have worked on process modeling and
have identified many concepts that need to be represented in PMLs. These con-
cepts might be organized into the following areas: 1) Core PM issues, 2) Con-
straint-oriented issues, 3) Goal-oriented issues, 4) Process Improvement issues,
5) Enactment issues, and a number of 6) Miscellaneous issues that do not warrant
separate areas at this time.

We now develop our domain model one area at a time, with each area being
identified by a different graphical notation in Figure 1. For instance, the core pro-

Turk & Vaishnavi 287

cess modeling concepts are boxed with solid lines, while the constraint-oriented
constructs are boxed with dotted lines. Each of the five areas is similarly identified.

Core Process Modeling Constructs
As identified by Curtis, Kellner, & Over (1992) and almost all others working

on process modeling, activities and deliverables are the most commonly-identified
core process modeling issues. Activity-sequencing is also a central concern, but
since there are so many questions and issues associated with activity sequencing it
is frequently addressed separately and we have chosen to consider it separately.

An activity is a task or operation performed in order to reach a goal (WfMC,
1994). An activity can be fundamental, and therefore indivisible (atomic), or it can
be high-level and composed of sub-activities (WfMC, 1994).

Activities generally produce or depend on deliverables. An activity that de-
pends on, or uses, a deliverable requires that deliverable as input. An activity may
optionally produce one or more deliverables as output. These core process mod-
eling constructs are illustrated in Figure 1 as classes outlined with solid lines.

Constraint-Oriented Constructs
The second most frequently-identified issues in process modeling involve the

sequencing of activities and the specification of constraints on activities and
deliverables. What is the order in which a specified set of activities should be
performed? In what ways is the performance of these activities constrained? What
are the rules that define if or when an activity may be performed? What assertions
must be true before, during, or after an activity is performed? What activities
produce a deliverable? What deliverables must be available before an activity can
proceed? While these are fundamental process modeling questions, they may be
some of the hardest to answer. Constraint-oriented constructs are used to model
these issues and are illustrated in Figure 1 as classes outlined with dotted borders.

A “normal sequence” may specify the order in which activities typically occur,
repetition (iteration), selection, and whether the activities occur in parallel or not.
Normal sequencing of activities, such as the ordering specified in the waterfall
model, could be viewed as activity1→activity→ dependencies. In other words, a
succeeding activity is dependent on a preceding activity in order to be initiated.
There are actually quite a variety of software development process dependencies
that can exist, or that might need to be modeled, when documenting a process
model. In addition to activity1→activity2 dependencies, there may be
activity→deliverable, deliverable→activity, and deliverable1→deliverable2 de-
pendencies.

Activity→deliverable dependencies are where activities produce deliverables,
or conversely, where deliverables depend on activities in order to be produced.

288 A Domain Class Model for Software Process Models

Deliverable→activity dependencies are the complement of activity→deliverable
dependencies. In this type of dependency, an activity is dependent on a deliver-
able; in other words, the activity requires the deliverable (of yet another activity)
as input so that it can carry out its task. Finally, a deliverable1→deliverable2
dependency is where a second deliverable requires the existence of the first in
order for the second one to be created.

Besides “normal sequencing” and dependencies, two other types of constraints
may exist: rules and assertions. A rule is a condition-action pair where, if the
condition is true then the action will be performed. Rules are basically if-then-else
statements with several additional constructs attached. Some rules will be local in
scope to certain activities; they will be relevant only while these activities are run-
ning. Other rules may be global in nature; they are applicable throughout the pro-
cess model. Rules may be active before, at the same time as, or after activities run.

Sometimes it is necessary to specify that certain statements of fact be true at
various points in a process. Assertions represent these statements of fact. Asser-
tions are simply conditions, just like the conditions in Rules. However, Assertions
have no Actions associated with them — an Assertion’s condition must simply be
true, locally or globally, and before, during, or after whatever activities it is associ-
ated with.

Figure 1: Process Modeling Domain Class Model ������������
������������������������
�����������������������

�����������

�����������
�����������

������������������������������
������������������������������

���������������������������
���������������������������

���������������������������
���������������������������

���������������������������������
���������������������������������

������������
������������

�������������
�������������

������������
������������

�������������������������
�������������������������

����������������
����������������

����������������
������������������������������

���������������������������
������������������������

�����������

������������������������
������������������������

�������������

�������������
�������������

�����������������
�����������������

������������
������������

�����������

�����������
�����������

�����������
�����������

�����������
�����������

����������������
����������������

���������������
���������������

����������������������������������
����������������������������������

���������������������������������
���������������������������������

���������������������������������
���������������������������������

���������������������������������
���������������������������������

����������������������
����������������������

��������������
��������������

�������������������������
�������������������������

����������������
����������������

Turk & Vaishnavi 289

From the discussion above we can see that all Constraints are global or local,
and may be temporally active before (pre), while (parallel to), or after (post) their
associated Activities are executing. From this, we can then see that Dependencies
are specific types of constraints. For instance, an activity→deliverable depen-
dency can be seen as a post-constraint: namely, the deliverable will be completed
after the activity is carried out - the deliverable will be produced as a result of the
activity. Alternatively, we could see an activity→deliverable dependency as a pre-
constraint: the activity must be carried out before the deliverable can exist. Con-
straint-oriented constructs are indicated in Figure 1 as classes with dotted bor-
ders.

Goal-Oriented Constructs
For those who must perform them, activities, their sequencing and constraints,

and associated deliverables (inputs and outputs) are of prime concern. However,
for those who are charged with managing the organization, the activities are simply
the means to reaching the organization’s goals. In fact, totally different sets of
activities, constraints, etc. might conceivably accomplish the same set of goals.
Or, conversely, different goals might be met by the same set of activities.

In order for management to assess how well activities accomplish goals, there
must be some relationship between the two. The GQM (Goal-Question-Metric)
paradigm Basili (1992) provides a framework for relating goals to activities and
for assessing how well goals are met. As originally defined in the GQM paradigm,
goals are things an organization wants to accomplish, sets of questions are asked
to determine if the goals are being met, and metrics are used to collect data to
provide answers to questions.

While not originally applied to SWD processes, GQM can be useful in this
area as well. Organizations identify goals, and questions are asked and data is
collected via various metrics to assess how well these activities are meeting the
goals. The classes in Figure 1 with a dashed border illustrate how GQM is tied
with the activities and deliverables of a process model.

Process Improvement Constructs
As soon as goals are included in our model, process improvement becomes an

interest. Software process improvement (SPI) and continuous process improve-
ment (CPI) refer to the idea that an organization continually attempts to improve
the processes it uses for producing software. Thus we include a process improve-
ment area in our model.

CPI is realized through activities, whose sole purpose is to improve the SWD
process, which are carried out in parallel with (or before or after) SWD activities.
While it would be possible to model CPI activities as regular SWD activities, we

290 A Domain Class Model for Software Process Models

have chosen to include explicit CPI constructs because of their unique importance
in the SWD process. While CPI activities have all the features of regular SWD
activities, they may also be local or global, and may carried out before, after, or in
parallel with the SWD activities with which they are associated. In Figure 1, the
classes with a dashed and double-dotted border identify the process improve-
ment area.

Enactment Constructs
Finally, we are interested in who performs various activities and in document-

ing tools that can be used to fully or partially automate certain tasks. In the model
these aspects are specified with actor and tool constructs, which indicate how the
process is enacted.

Each activity may be performed by one or more actors. For any deliverable
produced by or used in an activity, one or more tools may be used to help auto-
mate the deliverable’s production or maintenance. If an activity is carried out solely
by an actor with no help from a tool, the activity is considered manual. If a tool
fully carries out an activity, the activity is considered automated. Tool-assisted
activities are carried out by actors with the help of tools. The classes in Figure 1
with a dashed and dotted border identify the enactment area’s constructs.

SUMMARY
This paper has suggested that if “software processes are software too,” then

so are software process models, and hence software process modeling systems
might benefit from following similar approaches as those recommended for soft-
ware development in general. Currently, approaches such as the Unified Process
recommend the construction of a variety of models – such as a domain class
model – during software development. In this paper we presented a process mod-
eling domain class model that documents key constructs that are important in
process modeling, organized into five fundamental areas. By focusing on this larger
perspective, by formally documenting this model, and by including a broader range
of constructs than are usually included in current process modeling systems, this
paper is intended to be a stimulus in designing better and more useful process
modeling systems.

ENDNOTES
1 With due respect to Osterweil (1987), “Software Processes are Software Too.”
2 Many people use the terms object and class interchangeably; however, the

Unified Process and the UML (Unified Modeling Language) distinguish be-
tween the two. A class model describes general categories, while an object

Turk & Vaishnavi 291

model describes specific instances. Class diagrams have been a part of the OO
(Object-Oriented) design culture for quite some time, and are a central part of
the UML as defined by Booch, Rumbaugh, and Jacobson (1999).

REFERENCES
Arbaoui, S. and Oquendo, F. (1994). Goal oriented vs. activity oriented process

modelling and enactment: Issues and perspectives. 3rd European Workshop
on Software Process Technology (EWSPT’94), Feb 7-9, 1994, Villard de
Lans, France.

Barghouti, N. S. and Kaiser, G. E. (1992). Scaling up rule-based software devel-
opment environments. International Journal of Software Engineering and
Knowledge Engineering, 2(1), 59-78.

Basili, V. R. (1992). Software modeling and measurement: The goal/question/
metric paradigm. Computer Science Technical Report Series CS-TR-2956,
UMIACS-TR-92-96, September. College Park, MD: University of Maryland.

Booch, G., Rumbaugh, J. and Jacobson, I. (1999). The Unified Modeling Lan-
guage User Guide. Reading, MA: Addison-Wesley.

Conradi, R., Fernstrom, C., Fuggetta, A. and Snowdon, R. (1992). Towards a
reference framework for process concepts. 2nd European Workshop on Soft-
ware Process Technology (EWSPT’92), Sep 7-8, 1992, Trondheim, Nor-
way.

Curtis, B., Kellner, M. I. and Over, J. (1992). Process modeling. Communica-
tions of the ACM, 35(9), 75-90.

Dowson, M. (1987). Iteration in the software process: Review of the 3rd interna-
tional software process workshop. Proceedings of the 9th International Con-
ference on Software Engineering (ICSE’87).

Dowson, M. (1993). Software process themes and issues. 2nd International
Conference on the Software Process (ICSP’93/ICSP2), Feb 25-26, Berlin,
Germany.

Engels, G. and Groenewegen, L. (1994). SOCCA: Specifications of coordinated
and cooperative activities. In Finkelstein, A., Kramer, J. and Nuseibeh, B.
(Eds.), Software Process Modelling and Technology, 71-102. New York:
John Wiley & Sons.

Feiler, P. H. and Humphrey, W. S. (1993). Software process development and
enactment: Concepts and definitions. Proceedings of the Second Interna-
tional Conference on the Software Process: Continuous Software Process
Improvement, Feb 25-26, Berlin, Germany.

Finkelstein, A. (1989). Not waving but drowning: Representation schemes for
modelling software development. 11th International Conference on Soft-
ware Engineering (ICSE’89), May 15-18, Pittsburgh, PA, USA.

292 A Domain Class Model for Software Process Models

Humphrey, W. S. (1989). Managing the Software Process. Reading, MA:
Addison-Wesley.

Humphrey, W. S. (1995). A Discipline for Software Engineering. Reading,
MA: Addison-Wesley.

Jacobson, I., Booch, G. and Rumbaugh, J. (1999). The Unified Software De-
velopment Process. Reading, MA: Addison-Wesley.

Jarke, M., Jeusfeld, M. A., Quix, C. and Vassiliadis, P. (1998). Architecture and
quality in data warehouses. Proceedings of the 10th International Confer-
ence on Advanced Information Systems Engineering (CAiSE’98), June 8-
12, Pisa, Italy.

Kellner, M. I., Briand, L. and Over, J. W. (1996). A method for designing, defin-
ing, and evolving software processes. Fourth International Conference on
the Software Process (ICSP’96/ICSP4), Dec 2-6, Brighton, UK.

Lehman, M. M. (1997). Process modelling–Where next? 19th International
Conference on Software Engineering (ICSE’97), May 17-23, Boston, MA.

Osterweil, L. J. (1987). Software processes are software too. 9th International
Conference on Software Engineering (ICSE’87), April 1987.

Paulk, M., Weber, C., Curtis, B. and Chrissis, M. B. (Eds.). (1995). The Capa-
bility Maturity Model: Guidelines for Improving the Software Process.
Reading, MA: Addison-Wesley.

Rolland, C., Souveyet, C. and Moreno, M. (1995). An approach for defining
ways-of-working. Information Systems, 20(4), 337-359.

Rumbaugh, J., Jacobson, I. and Booch, G. (1999). The Unified Modeling Lan-
guage Reference Manual. Reading, MA: Addison-Wesley.

Starke, G. (1994). Why is process modelling so difficult? 3rd European Work-
shop on Software Process Technology (EWSPT’94), Feb 7-9, Villard de
Lans, France.

Sutton, Jr., S. M. and Osterweil, L. J. (1997). The design of a next-generation
process language. Proceedings of the 6th European Software Engineering
Conference (ESEC’97); 5th ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering (FSE’97), September, Zurich, Switzerland,
142-158.

Workflow Management Coalition. (1994). WfMC Workflow Reference Model.
Downloaded version 1.1, dated 29-Nov-94, from www.aiim.org/wfmc Octo-
ber 1997.

Leung & Li 293

Chapter 21

A Process Model for Certification
of Product and Process

Hareton Leung and Vincent Li
Hong Kong Polytechnic University, Hong Kong

Software certification has become more and more popular, especially for
software developers, as it can provide confidence to customers that the
product is of acceptable quality. Software certification can be done at two
levels: the development process and the software product itself. There are
many different certification schemes, such as ISO 9001 and CMM for
development process, and Y2K compliance for software product. This chapter
first identifies two process models, one for process certification and another
for product certification. We then propose a certification process for
Commercial off-The-Shelf (COTS) product and its development process.
Finally a generalized model of certification process (GCM) for both product
certification and development process certification is developed. Example
certification schemes are then mapped to this model to illustrate its validity.
The evaluation shows that the popular certification schemes fit well into
GCM. GCM may be used as a basis to develop a certification scheme for
particular application domains or to validate a particular certification
process.

INTRODUCTION
In recent years, certification has gained prominence in the standards world.

In fact, it has its origins in the very foundation of standardization. Certification is
the procedure by which a third party gives written assurance that a product, pro-
cess or service conforms to specified characteristics. Certification involves an
assessment process, which compares the actual measurements of the characteris-
tics of interest with the specifications of those characteristics.
Previously published in Challenges of Information Technology Management in the 21st Century, edited
by Mehdi Khosrow-Pour. Copyright © 2000, Idea Group Publishing.

294 A Process Model for Certification of Product and Process

Both ISO and IEEE define certification similarly. According to ISO, conformity
certification is “the action of certifying by means of a certificate of conformity that a
product or service is in conformity with specific standards or technical specifications”
(Geneva, 1980). IEEE defines conformity certification as “the process of confirming
that a system, software subsystem, or computer program is capable of satisfying its
specified requirements in an operational environment” (Neumann, 1989).

Historically, software certification is an extension of system certification. In
most systems, software is only one of the components. As shown in Figure 1,
certification can serve as:
• a guarantee to the customer that the software product possesses a certain set of

well defined attributes that makes it suitable for its intended use, and
• a protection for the producer against costly legal suits by the customer, when

the customer is not satisfied with the product.
Software certification can be done at two levels: process certification and

product certification. Historically, as software was perceived as intangible, a
common way to certify software was to rely on the thoroughness of its develop-
ment methodology. This led to the certification of process. The basic assumption
is that the development process can assure that the developed product complies
with its specifications.

Recently, developing software systems from Commercial Off-The-Shelf
(COTS) components has received great attention, as it promises a more cost-
effective way for software development (Voas, 1999; Voas, 1998; Software En-
gineering Institute, 1995). However, there is often difficulty in selecting the right
COTS and gaining confidence that the COTS will function as advertised. An
objective of this study is to develop a certification model for COTS products, to
ensure the quality and functionality of the COTS products, as well as to give
confidence to the customers of COTS products. Also, a general certification model
is needed to act as a basis to develop a certification scheme for particular applica-
tion domains and to validate a particular certification process.

Figure 1: Use of Certification

User

Certification

Producer

guarantee protection

Leung & Li 295

Section 2 discusses process certification and product certification. Some ex-
amples of each type of certification will be given. Section 3 first outlines the Pro-
cess Certification (PCC) model and Product Certification (PDC) model, and then
compares these certification models. Also, certification processes for COTS prod-
uct and its development process are discussed in this section. Section 4 proposes
a generic certification model, which encapsulates both the PCC and PDC models.
Section 5 provides the conclusion.

CERTIFICATION
 Process Certification

A commonly used definition of software quality is “the totality of features and
characteristics of a product or service that bear on its ability to satisfy stated or
implied needs” (Neumann, 1989). Given this definition there would appear to be
no such thing as process quality. However, by implication a quality process is one
which leads to the production of a quality product.

One approach to achieving high quality is to use an effective and defined
production process. There is, however, no general agreement on the exact nature
of such a process. Quality Management Standard (QMS) such as ISO 9001 and
maturity model provides a baseline for an adequate production process by con-
straining the process to fulfil certain key requirements. It is hoped that companies,
which follow the QMS, will have the capability and commitment to produce qual-
ity products. Two examples of process certification are described as follows.

ISO9001 Quality Management
A popular leading international QMS adopted for software development is

ISO 9001. In applying ISO 9001 to software it has to be recognized that soft-
ware differs in a number of ways from other industrial products, and that the
processes used to produce software are not typical industrial processes. ISO
9000-3 helps to address some of these differences with reference to the software
lifecycle and supporting activities. ISO 9001 certification assessment is divided
into three steps: exchange information and prepare for the assessment, perform an
on-site assessment and evaluate the result, and renewal audit on a regular interval.

Bootstrap Assessment Method
BOOTSTRAP is an European method for software process assessment and

improvement (Card, 1993). It enhanced and refined the Capability Maturity Model
(CMM) developed at the Software Engineering Institute (SEI) for software pro-
cess assessment (Humphrey, 1995), and adapted it to the European software
industry. Bootstrap designed a very detailed process quality attribute hierarchy
and enhanced the SEI Questionnaire by taking into account the ISO 9000-3 guide-

296 A Process Model for Certification of Product and Process

lines for software quality and the European Space Agency (ESA) PSS-05 soft-
ware engineering standards. In addition, it refined the SEI maturity level algorithm
to calculate a maturity level for each of the individual process quality attributes.
Thus, the result of the assessment is a process quality profile, which clearly iden-
tifies strengths and weaknesses of the process. This quality profile serves as a
quantitative basis for making decisions on process improvement. BOOTSTRAP
can also be used as a preparation for the ISO 9001 certification.

Bootstrap assessment consists of three steps: briefing section, assessment
preparation, and on-site assessment visit.

 Product Certification
Another level of software certification is the product certification. Product

certification involves directly assessing the equivalence of key attributes of soft-
ware at the level of its specifications, as well as behaviour. The notion of software
product quality can be decomposed into a number of characteristics (McCall,
Richards & Walters, 1977; Boehm et al., 1978; Hausen; Ross, 1989). Such char-
acteristics typically include: reliability, usability, functionality, maintainability, cor-
rectness, portability and testability.

The first definition of the characteristics of software product quality appears
in the Factor-Criteria-Metric model of McCall (1977). This model assumes that
there are a number of high-level quality factors (e.g., usability) and that these
factors may be defined in terms of some criteria (e.g., modularity). The lowest
level is the metrics, which measure the criteria. Other well-known quality models
include Gilb’s method of designing by objectives (Gilb, 1987).

The ISO/IEC 9126 also defines a set of software product quality charac-
teristics, which is a useful baseline for product assessment activities (ISO/IEC
9126, 1991). The ISO/IEC 9126 quality model is given in Figure 2.

Two examples of product certification are described as followed.

Figure 2: ISO/IEC 9126 Quality Model

Leung & Li 297

Department of Defense Y2K Certification Process
The Department of Defense Y2K certification process is a structured pro-

cess that is used to validate the effectiveness of the Y2K renovation solutions
through a combination of test data review and independent test of the solution in
an operationally representative environment (DoD Y2K Certification Process).
The process provides the quantitative evidence that expected diligence was em-
ployed during the renovation effort and that the renovated system is ready for
deployment. The Y2K certification process consists of 3 main stages: prepara-
tion, assessment and evaluation.

Hong Kong Article Numbering Association’s Software Certification
Program

The Hong Kong Article Numbering Association (HKANA) Software Certi-
fication Program (SCP) is a software testing service offered by the HKANA
(1987). It aims to check the compliance of a software application to the European
Article Numbering Association International Electronic Data Interchange (EDI)
standard (EANCOM). Under the SCP, a set of pre-defined testing material will
be provided to the SCP Executor to test the software developer’s application.
The testing material focuses on the conformance of local EANCOM standard and
the capability of the software application in translating information into EDI
EANCOM standard documents and to communicate with selected networks and
HKANA’s EZ*Trade service. The SCP certification process is divided into 4
stages: application, software developer internal quality check, external on-site audit,
and certification.

 CERTIFICATION MODELS
This section will first present two certification models, one for process certi-

fication and another for product certification. We then adopt these models to the
certification for COTS product and the certification of development process of
COTS product respectively. Note that there are two key participants of the cer-
tification process: the certification body and certificate applicant (or the software
developer). They play different roles in the process.

For the presentation of the certification process, we have adopted the IDEF0
notation (Klinger). Boxes within the figure depict the sub-activities of the activity
named by the figure. Arrows between boxes depict availability of work products
to activities. Arrows entering the left side of a box are inputs to the activity. Ar-
rows exiting the right side of a box are outputs from the activity. Arrows entering
the top of a box are controls that regulate the activity, and those entering the
bottom are mechanisms that support the activity. A sequential ordering of boxes
does not necessarily imply a sequential flow of control between activities.

298 A Process Model for Certification of Product and Process

 ProCess Certification (PCC)
 Figure 3 shows the model of Process Certification (PCC). There are five

major stages.

PCC-0: Review certification guideline
The certification body will study the process requirement, analyse the rela-

tionship between the process requirement and the certification model, and identify
some important requirements. It will then issue and publish the certification guide-
lines. An applicant will study the certification model and process requirement, and
gather some important information for process implementation. It then implements
the certification requirement into the production process before the process as-
sessment.

PCC-1: Request for process certification
After the implementation of the certification requirement in its production pro-

cess, the applicant will apply for certifying the production process and submit an
application form to the certification body. The certification body will process the
certification request and generate an application number to identify each certifica-
tion.

Figure 3: PCC Model

Leung & Li 299

PCC-2: Prepare for assessment
The certification body will prepare the assessment guidelines and certification

requirements to assess the production process of the applicant. It may provide a
pre-assessment service and audit training to the applicant. The applicant should
ensure that the production processes fulfil the requirement of certification. The
applicant then requests for certifying the process.

PCC-3: On-site audit
The certification body will send assessors to the applicant’s development

site. Assessors will follow the assessment and certification guidelines to collect the
process information and assess the applicant’s production process. The applicant
should provide the necessary information to help assessors to assess the produc-
tion process. Finally, the assessors should produce an assessment report.

PCC-4: Analyse assessment result
The certification body will evaluate the assessment result to determine whether

the production process passes the assessment. It will send the final result back to
the applicant. The applicant should analyse the assessment result to identify areas
for improvement. Generally, the certification body should evaluate its certification
guideline after each certification to ensure that it keeps pace with the environmen-
tal and technological changes.

Certification for Development Process of COTS(CDPCC)
Next we illustrate a potential use of PCC by adopting it to certifying the

development process of COTS. We will assume that a slightly modified waterfall
model will be used for the development of COTS. The only difference between
the traditional development and COTS component development is the scope of
the development. Traditional development may develop a large system which con-
tains many features, such as database, accounting, security, etc. A COTS compo-
nent will mainly focus on one specific feature. The development process for COTS
is largely the same as the traditional development. Thus, we can apply the PCC
model in certifying the development process of COTS. But some points should be
noted during process assessment of COTS.
1. In the COTS development, the most important part of the product is the inter-

face that is used to connect to the main system. In the process assessment
phase, the assessor should pay more attention on how the interface is designed
and the interface documentation.

2. Another concern is the testing stage. As the buyers of the COTS product will
not receive its source code, the only testing they can do is black-box testing.
The assessor should pay special attention to the testing process.

300 A Process Model for Certification of Product and Process

 ProDuct Certification (PDC)
 Figure 4 shows the process flow of the Product Certification (PDC) model.

Like the PCC model, PDC also consists of five major stages.
PDC-0: Review certification guideline
The certification body will study the domain requirement, analyse the rela-

tionship between the domain requirement and the domain certification model, and
identify some important criteria. It will issue and publish the certification guide-
lines. An applicant will study the certification model and domain requirement, and
gather some important information for product implementation. The applicant then
implements the certification requirement into the product before any product as-
sessment.

PDC-1: Request for product certification
After the implementation of the certification requirement in its product, the

applicant will apply for certifying the product and submit an application form to the
certification body. The certification body will process the certification request and
generate an application number to identify each certification.

Figure 4. PDC Model

Leung & Li 301

PDC-2: Prepare for assessment
The certification body will prepare the assessment schedule and assessment

material (e.g., test case) to assess the product of the applicant. It may provide
some pre-assessment material to the applicant’s staffs to familiarize them with the
certification process. The applicant should do the pre-assessment to ensure the
product can fulfill the requirement of the certification. The applicant then requests
for certifying the product when it is ready.

PDC-3: Perform laboratory assessment
The assessors of the certification body will follow the assessment and certifi-

cation guidelines to assess the applicant’s product in the laboratory. The applicant
should provide all documentation of product to the assessors. Finally, the asses-
sors should produce an assessment report.

PDC-4: Analyse assessment result
The certification body will evaluate the assessment result to determine whether

the product passes the assessment. The certification body may provide detail
assessment information to the applicant if the certification failed. The applicant
should analyse the assessment result to identify areas for improvement.

Figure 5. CCPD Model

302 A Process Model for Certification of Product and Process

Certification for COTS ProDucts(CCPD)
Figure 5 shows the process flow of the Certification for COTS (CCPD)

model. Like the PDC, CCPD also consists of five major stages. Some stages are
very similar with the PDC stages. Only CCPD-0 and CCPD-2 are different with
PDC-0 and PDC-2 respectively.

CCPD-0: Review COTS certification guideline
The certification body will study the COTS domain requirement, and identify

some important criteria. Then it will issue and publish a certification guideline. An
applicant will study the certification guideline and domain requirement, and gather
some important information for COTS implementation. The applicant then imple-
ments the certification requirement into the COTS. For example in the E-com-
merce area, the producer of COTS for security should study the certification
guideline and domain requirement in internet security, and identify the type of se-
curity product, such as secure storage, secure web transactions, and secure pay-
ment. If the COTS is classified as the secure web transactions, then it may need to
be implemented with some of the following approaches, such as Secure Socket
Layer (SSL), Secure Hypertext Transfer Protocol (S-HTTP), Private Communi-
cation Technology (PCT), and Web Security through the use of Generic Security
Service Application Program Interface (GSSAPI).

CCPD-2: Prepare for assessment
The certification body will gather the domain requirement, certification guide-

line and COTS requirement to prepare the assessment schedule and assessment
material to assess the COTS. As the interface of the COTS component is more
important than traditional products, the certification body may specially prepare
the interface assessment for each COTS component. As the buyers of COTS will
not receive its source code, the assessor may decide to use some white-box test
cases to evaluate its behaviour. The certification body may also spend more time
in designing the system connection to the COTS component. Thus, the prepara-

Similarity scale Degree of similarity
Slightly similar Less than 25%
Partially similar 26% ~ 50%
Largely similar 51% ~ 75%
Mostly similar More than 75%

Table 1: 4-point Similarly Scale

Leung & Li 303

tion for assessment of COTS component may require more effort than that of
traditional products. The applicant should do a pre-assessment to ensure the COTS
can fulfil the requirement of the certification. The applicant then requests for certi-
fying the COTS when it is ready.

Models Comparison
This section compares the PCC model with PDC model. The focus of the

comparison includes the action, input, control, support and output of the process.
Table 1 shows the relationship between the scale and degree of similarity.

Figure 6: GCM

Table 2: Models Comparison
PCC PDC Similarity
PCC-0 PDC-0 Mostly similar.
PCC-1 PDC-1 Mostly similar.
PCC-2 PDC-2 Partially similar.

PCC-2 needs to generate the assessment guideline for assessing the pro-
cess, while PDC-2 needs to prepare the assessment material (test case) to
 assess the product.

PCC-3 PDC-3 Largely similar.
Criteria are different. PCC uses subjective criteria, as different assessors
may have different interpretation of the assessment guideline. PDC often
uses objective criteria based on the test execution result.
The locations where the assessment takes place are different.

PCC-4 PDC-4 Mostly similar.

304 A Process Model for Certification of Product and Process

Table 2 compares PCC to PDC. Both certification models have the same
number of stages and are very similar. Most of the procedures of both models
have the same purposes and provide similar functions, although they differ in
some fine details. For example, PCC-0, PCC-1, and PCC-4 are mostly simi-
lar to PDC-0, PDC-1, and PDC-4 respectively. The key difference is that the
objective of PCC is on the production process, while that of PDC is on the
software product itself.

The other two stages also show a high degree of similarity. For example, the
Prepare for Assessment stage of PCC (PCC-2) needs to prepare the assessment
guideline to assess the process while the corresponding stage of PDC only needs
to prepare the assessment material to assess the product.

For PCC-3 and PDC-3, the major difference is the assessment criteria. PCC
involves some degree of subjectiveness, as the assessment is partly dependent on
the assessors, while the PDC often uses objective criteria based on the test ex-
ecution result. Also, in product assessment, PDC will assess the product in a
special laboratory which is usually not the applicant’s own development site. But
the process certification will definitely assess the process at the development site,
as the assessors need to appraise the staff’s working procedures and the produc-
tion methodologies.

 A Generic Certification Model (GCM)
As discussed in Section 3.3, the main difference between PCC and PDC is

the assessment stage. Thus, a Generic Certification Model (GCM) for both certi-
fication processes is suggested in Figure 6. The GCM is a natural and obvious
adaptation of both PCC and PDC. Its model description is given in Table 3.
GCM consists of five stages: certification guideline, certification request, prepare
for assessment, perform assessment, and analyze assessment result.

MODEL EVALUATION
This section evaluates the validity of GCM by comparing it to the example

certification schemes presented earlier in Section 0. Table 4 summarizes the find-
ings. All four schemes can be easily mapped to the five stages of GCM. Note that
although the DoD certification process starts from the assessment and does not
formally include the first two stages of GCM, it nevertheless needs to provide the
certification guideline to the applicant. It also needs to collect some data before
the certification. Therefore the first two stages of GCM are implicitly done.

CONCLUSION
Software certification is an appealing trend as it can greatly improve the overall

quality level of software and helps to control the cost of development. This paper

Leung & Li 305
Table 3: GCM Description

Certification body Applicant

GCM-0 : Gather the certification model information to issue, Study the entire domain or process requirement, and
Certification guideline update and maintain certification guidelines. domain or process certification model.

Input: Certification model Certification model
Control: Domain or process requirement & standard Domain or process requirement & standard
Support: International domain standard International domain standard
Output: Certification guideline Certification guideline

GCM -1: Process the application Send an application to the certification body to request
Certification request for certification.

Input: Domain or process certification model, Certification guide- Application form, Quality policy
line

Control: Nil Nil
Support: Nil Nil
Output: Application category Application no., Certification process request

GCM -2: Help the applicant to produce documentation to pass Prepare and implement the certification criteria to the
Prepare for the assessment whole company, pre-assess it before real assessment.
Assessment Input: Certification guideline, process knowledge, application Certification guideline / memo

category
Control: Domain or process requirement & standard Domain or process requirement
Support: Nil Nil
Output: Assessment material, schedule, certification guideline and Assessment schedule, quality policy and documentation

documentation
GCM -3: Do the assessment Cooperate with the assessors during the assessment and
Perform assessment provide the necessary information.

Input: Assessment material and certification guideline Company policies, process or product information
Control: Domain or process requirement & standard Domain or process requirement & standard
Support: Nil Nil
Output: Assessment result Assessment information

GCM -4: Evaluate the assessment result to see if there is something Analyse the assessment result and identify improvement
Analyse assessment that fail the assessment if some components fail the assessment
result Input: Assessment result Assessment results and its own process or product

Control: Domain or process requirement Domain or process requirement
Support: Certification standard Nil
Output: Evaluation result Improvement list

306
 A Process M

odel for C
ertification of Product and Process

Table 4: Evaluation of GCM

GCM ISO9000 Bootstrap DoD Y2K HKANA - SCP
GCM -0 Mostly similar. Mostly similar. Mostly similar. Mostly similar.
GCM -1 Mostly similar. Mostly similar. Mostly similar. Mostly similar.

Although the model does not As DoD department needs to en- The applicant needs to apply for
mention any certification appli- sure all the system in other depart- the certification and pays the fee.
cation, it should receive an ap- ments pass the Y2k test. Thus, ap-
plication before any certification. plicants are invited.

GCM -2 Mostly similar. The certific- Largely similar. Mostly similar. Mostly similar.
ation body will prepare the During the initial phase, a pre- Before the assessment phase, the Before the assessment phase, the
 assessment guideline & assessment questionnaire is dis- applicant needs to collect the test certification body prepares the
help the applicant to improve tributed in order to prepare and data and generate the test case. test data and generates the test
the process by meeting the collect information. case.
certification requirement. The The applicant fills in the
applicant follows the assess- questionnaire.
ment guideline to improve the
process.

GCM -3 Mostly similar. Mostly similar. Mostly similar. Mostly similar.
Assessors assess the produc- Between 110 & 150 questions Assessment is done in the labora- An on-site assessment will be
tion process in the develop- are discussed during the on-site tory by following the assessment carried out by executing the
ment site. visit, which covers all key as- guideline. prepared test cases.

pects of the software develop-
ment process.

GCM -4 Mostly similar. Mostly similar. Mostly similar. Mostly similar.
Improvement action planning The applicant provides the evid- The applicant verifies the com-
starts immediately after the on- ence that the system is ready to be pleteness of the report and to
site visit. certified and deployed. clarify any queries that may arise.

Leung & Li 307

proposes a general certification process model which includes both process cer-
tification and product certification. We believe that GCM captures the essence of
most certification schemes. It can be used as a basis to develop various kinds of
process and product certification method. As the GCM components are reus-
able, they can increase the efficiency and effectiveness to develop a new certifica-
tion method. GCM can also provide a basis to check whether a certification method
has all the key elements required for effective certification.

We also illustrate the model by adopting it to the certification of COTS prod-
ucts. The certification for the development process of COTS is very similar to the
process certification model, except that some special attention should be paid to
the assessment method. We also believe that these certification guidelines can help
to assess and certify the COTS product.

GCM is evaluated by matching it against several process certification and
product certification schemes. The result is very encouraging as these schemes fit
well into GCM. We will analyse additional certification schemes to further verify
the model. We also plan to study the assessment stage in greater details, as it is the
most critical part of the certification process. Our aim is to develop an objective
method to automate this stage.

REFERENCE
APICS Certification. http://www.apics.org/Certification/cert2top.htm.
Boehm, B. W., Brown, J. R., Lipow, M., MacCleod, G. L. and Merrit, M. J.

(1978). Characteristics of Software Quality. North-Holland, Amsterdam.
Card, D. (1993). Bootstrap team, “Bootstrap: Europe’s assessment method.”

IEEE Software, May, 93-95.
DoD Y2k certification process. http://www.army.mil/army-y2k/

CertificationProcess.htm.
Geneva, Certification: principles and practice, International Certification body

for Standardization, 1980.
Gilb, T. ‘Design by Objective’ North-Holland, Amsterdam, 1987.
Guides to Software Evaluation. http://www.scope.gmd.de/documents/EvalGuide/
Hausen, H., Yet Another Modelling of Software Quality and Productivity,

GMD, Germany.
Hong Kong Article Numbering Association Software Certification Program In-

formation Kit, Document No.: IK980713, Information Technology Division
Hong Kong Productivity Council, 1987.

Humphrey, W. S. The Capability Maturity Model: Guidelines for Improving
the Software Process, Softtware Engineering Institute, Addison Wesley, 1995.

ISO/IEC 9126. (1991). Information technology → Software product evaluation
→ quality characteristics and guides for their use.

308 A Process Model for Certification of Product and Process

ISO9000 certification process. http://www.qrccentral.com/timeline.htm.
Klingler, C. D. A Practical Approach to Process definition. http://www.asset.com/

stars/lm-tds/Papers/ProcessDDPapers.html.
Logica Consultancy Ltd. (1988). Quality Management Standards for Software.

Logica Consultancy Ltd., London, April.
McCall, J. A., Richards, P. K. and Walters, G. F. (1977). Factors in Software

Quality, vols. I-III. NTIS AD/A-049-014/015/055, Rome Air Development
Center, NY, USA, November.

Neumann, B. D. (1989) Software Certification. London; New York: Elsevier
Applied Science.

Rae, A. K., Hausen, H. L. and Robert, P. (1995). Software Evaluation for
Certification: Principles, Practice and Legal Liability. London; New York:
McGraw-Hill.

Ross, N. (1989). Version 2.0 high-level data model design. ESPRIT REQUEST
Project.

Software Engineering Institute. (1995). A commercial/business perspective. Pro-
ceedings of the SEI/MCC Symposium on the Use of COTS in System Ar-
chitecture and COTS Integration, Special Report CMU/SEI-95-SR-007,
24, June.

Voas J. (1999). Certification: Reducing the hidden costs of poor quality. IEEE
Software, July/August, 22-25.

Voas J. (1998). Certifying off-the-shelf software components. IEEE Software,
June, 53-59.

About the Editor 309

About the Editor

Salvatore (Sal) Valenti received his degree in Electronic Engineering from the
University of Ancona in 1983. Since 1990, he has performed research at the
Istituto di Informatica of the University of Ancona. He has tutored a number of
Master Thesis students in the fields of Software Engineering and Computer Based
Assessment. He has been a member of several research projects funded by the
Ministry of University and of Scientific and Technological Research (MURST),
by the National Research Council (CNR) and by the European Community. His
research activities are in the fields of Software Engineering, mainly in the elicitation
of functional specifications in the area of Requirements Engineering, and on
Computer Based Assessment. He is the senior assistant professor in Computer
Science at the University of Ancona. He has been on the editorial board for the
Journal of Information Technology Education since 2001. He has reviewed
articles in the Interactive Learning Environments Journal, Educational
Technology & Society, Campus Wide Information Systems Journal, Journal
of International Forum of Education Technology & Society and IEEE
Learning Technology Task Force, and Arizona State University/College of
Education’s journal, Current Issues in Education. For the International
Conference of the Information Resources Management Association (IRMA), he
was the track chair for “Computer Aided Software Engineering” in 2000 and
“Software Engineering” in 2001, and is the track chair for “Virtual Universities”
for the 2002 conference. He was on the “Web-based Teaching” panel at the 31st
Annual Meeting of the Decision Sciences Institute (DSI 2000), on the “Web-
based Education: Changing the Equilibrium?” panel at the 2001 IRMA International
Conference, and on the “Web-based Education and Diffusion” panel at the 9th
European Conference on Information Systems (ECIS 2001). He has also served
on the International Program Committee for several international conferences from
1997 to the present.

310 Index

Index
A

abstract data type (ADT) 256
abstract data type store 258
abstraction 100, 105
accidental relationship 272
adaptive control of thought (ACT) 197
adding a component 189
adjustment 116
analysis/reporting 211
anchoring 116
application control base 22, 25
application evolution 94
application programming interface (API) 93
applications 103, 105, 106, 108
architectural foundation 93
association level 160
automatic tools 238
automation 204

B
binary association 227
bootstrap assessment 296
bootstrap assessment method 295
business data processing systems 194
business logic 92
business software systems 92
business systems 92

C
capability maturity model (CMM) 295
CASE environment 2, 5, 69, 70
CASE repositories 58
CASE technology 1
CASE tools 5
central repository 22
certification 293
client/server 104
client/server architecture 209

client/server database systems 76
coding 247
coding style evolution 102
cognitive perspective 122
cognitive psychology 122
commercial off-the-shelf (COTS) 293
communicating real-time state machines

(CRSMs) 173, 174
communication mechanism 120
compiler 100
complete system design 172
component based development (CBD) 58
component class 162
component reuse 186
component-based ERP design 214
componentized domain knowledge 218
components 108
composite data 144
computation constraints 254
computer aided method engineering 1, 16
computer aided systems engineering

(CASE) 58, 78
computer audit 70
computer performance 101
computerized information systems 194
concurrency control and security services

9
constraint-oriented constructs 287
constraints 132
continuous process improvement (CPI)

289
control integration 2
control integration service 9
core process modeling constructs 287
corporate software development standards

94
coverage 270
communicating real-time state machines

(CRSM) 171

Index 311

D

daida 3
data constraints 254
data discovery phase 238
data integration 2
data model 271
data modeling 268
data storage mechanism 3
data structure layer 228
database (DB) 79, 103, 104, 106, 221
database connections 211
database development teams 76
database layer 92
debugging 247
declarative knowledge 198
defense Y2K certification process 297
defragmentation 119
degree of automation 201
deleting a component 189
dependent composition 250
design methodology 173
developers 102, 103, 106, 107
distributed information manager (DIM)

235, 236
distributed object environment 214
domain class model 284, 286
domain knowledge 218
domain knowledge components 218
domain-general 201
domain-specific 201
dynamic modeling 171, 173, 174

E

e-commerce application testing 209
e-commerce architecture 209
ECMA (European computer manufactures

association) 4
effective software reuse 92, 95
electronic data interchange (EDI) 297
enactment constructs 290
encapsulation 119
enterprise semantic layer 228
enterprise systems 103, 104
entity-rlationship (ER) 144
ERP (enterprise resource planning) 214
ERP applications 214

ERP customers 215
ERP designs 215
ERP domain knowledge 214
ERP vendors 216
errors 103
evaluated IDEs 190
existence-dependent symbol 151
existential integrity rules 278
extended spatiotemporal UML 143

F

federated information management system
(FIMS) 235

FIMS architecture 235
formal languages 172
formal specifications 129
forward engineering 78
fourth generation languages (4GLs) 101
framework 2
function-oriented methodologies 172

G

general model(s) 284
generalized model of certification process

(GCM) 293
generic certification model (GCM) 304
geographic information systems (GIS) 146,

221, 268, 269
geographic system (GS) 270
GIS 270
GIS data 268
GIS developers 268
GIS technology 268
global conceptual schema 119
goal-oriented constructs 289
GQM (goal-question-metric) 289
graphic base 22
graphic editor 18, 25
graphical data model 271
graphical development languages 102
graphical user interface (GUI) 92, 105, 107
group editor (GED) 33
group symbol 151
GUIWidget 97

312 Index

H

hardware 106
heterogeneous information management

systems 220
high level languages (HLLs) 100
high-level state machines 172
HTML 96

I

IBM AD/cycle 4
identifying a component 189
IEF 2
IEW 2
IKOODM core modeling elements 224
IKOODM structure 228
incremental development process model 248
information modeling 193, 194, 201
information system audit 70
information systems (IS) 62
information systems development (ISD) 10
information technology (IT) 99, 209
information-processing systems (IPS) 197
input constraint 253
integrated development environment (IDE)

186
integrated knowledge-object-oriented data

model 223
integrating a component 189
integration 104
integrity and consistency service 8
interface service 9, 11
internal representation 274
Internet 102, 106, 108
IRDS 4
ISD/IEC 4
IT architecture 96
IT systems 102, 104
iterative design refinement with sequence

diagrams 174
Ithaca 3

J

java applets 96
java IDEs 187
java integrated development environments

186
java servlet 96

K

knowledge based manager (KBM) 235, 237
knowledge modeling 214, 217

L

language generation 100
language optimisation 101
language usage 102
languages

C 102
C++ 102
COBOL 102, 106
Java 102, 108
SQL 102, 106
visual basic 102, 105, 108

large organization 221
life-cycle support 212
load-testing 209, 210
load-testing plan 212
local area networks (LANs) 104
local information manager (LIM) 235, 237
locating a component 189
lower-level state machines 172

M

machine language 100
mapping 153
mathematical calculations 100
mental model 249
meta model base 21
meta model editor 18, 21
meta model structure 45
MetaCASE 4
method engineering 63, 193, 201
method engineers 17
model class 162
mModeling constructs 195
modeling service 8, 11
modeling service object 21
modular knowledge acquisition tools (M-

KAT) 239
modular programming 256

N

natural language requirement specification
129

Index 313

natural language requirement specifications
129

need for reuse 93
network 103, 108
NIST (national institute for standardization

and technologies) 4
NIST/ECMA 2
Non-procedural languages 101
normal sequencing 288
notification mechanism 47
noun/verb analysis 118

O

object 9, 271
object class level 158
object management service 2
object management workbench 2
object oriented analysis (OOA) 173
object oriented reuse foundation (OORF) 97
object storage layer 228
object structure 21
object structure editors (OSE) 33
object technology 93
object-orientation 102, 103, 108
object-oriented (OO) 144
object-oriented (OO) approach 196
object-oriented (OO) databases 230
object-oriented paradigm 220
object-oriented service model 7
object-oriented techniques 222
OMT extensions 173
operational environments 211
organizational goals 284
organizational information systems 1
output constraint 253

P

partially-ordered sequences 285
passenger train system (PTS) 173
PCTE 2
PCTE (portable common tool environment) 2
physical data model (PDM) 79
physical entity-relationship (ER) model 79
popmanager 48
population derivation rules 21
population editor 18, 24
powerdesigner data architect 79

presentation integration 2
presentation layer 92, 96
procedural knowledge 200
process certification 294, 295
process certification (PCC) model 295
ProCess certification (PCC) 298
process improvement 284
process improvement constructs 289
product certification 294, 296
product certification (PDC) model 295
productivity 103, 105
programming language generations 100

Q

quality management 295
quality management standard (QMS) 295
query browser and editor (QuBE) 235, 236

R

RAISE (rigorous approach to industrial
software engineering) 133

re-engineering 78
real-time object-oriented modeling

(ROOM) 172
real-time object-oriented systems 171
real-time state machines 171
real-time systems 171
recursive Software Process Model 251
referential Integrity 279
relational data model 221
relational data modeling 268, 273
relational database 76
relational representations 274
repository 3, 22
repository based models 2
repository object 10
representation formalism 17
requirements for software engineering

environments 14
requirements specification 173
return on investment (ROI) 212
reusability 129
reusable component (RC) model 133
reuse-oriented software development 186
reverse engineering 78
rigorous reuse process 129
rigorous testing 209

314 Index

risk oriented approach methodology 71
round-trip engineering 76, 77
RSL (RAISE specification language) 129
RSL language 133

S

scenario descriptions 172
scenario view 131
schema definition phase 238
schema incompatibilities 238
schema integration 237
schema reclassification phase 239
schema semantics 237
SEI questionnaire 295
semantic gap 121
semantic modeling constructs 153
sequence diagrams 172, 174
service object 10
service object primitives 10
service object-based model 6
services 8
shortcuts 257
software 102, 106, 108
software certification 293, 296
software certification program (SCP) 297
software complexity 253
software development 99, 247
software engineering 129
software engineering environments

automated support 14
software engineering institute (SEI) 295
software process improvement (SPI) 289
software process model 284
software process models 284, 290
software processes 290
software systems 247
software through pictures 3
spatial coverages 275
spatial data 143, 271
spatial data integrity rules 277
spatial entity 271
spatial relationships 276
spatiotemporal applications 143
spatiotemporal data 144
spatiotemporal ER model (STER) 145
specification box 151
speed 106

spiral process model 249
state transition diagrams (STD) 79
storage and manipulation service 8, 11
structured programming 102, 103
sub-data elements 273
support environments 1
system architecture 104
system development 64, 280
system models 77

T

table 271
task structure editors (TSE) 33
team work 107
teams 107
technological failure 194
thematic symbol 152
thread 10
tool 102, 105, 106
top-down decomposition 249
traditional method 71
transaction service 11
triggering operations 280

U

UML (united modeling language) 73, 111, 112,
143, 145, 171

UML extension mechanisms 150
unified process 284
unified software development process 111
upperCASE 17
usability testin 210
use case 119
use case concept 111
use case fundamentals 112
use cases 111
user 105, 108
user interface 105
user primitive 10

V

version service 9
view integration 119
view representator 24
view service 8, 12

Index 315

W

waterfall software development process
model 248

Web site applications 209
working conferences on reverse engineering

78
working memory 198
World Wide Web 102, 105, 106

1331 E. Chocolate Avenue, Hershey, PA 17033-1117 USA
Tel: (800) 345-4332 • Fax: (717)533-8661 • cust@idea-group.com

IDEA GROUP PUBLISHING
IGP

See the complete catalog of IGP publications at http://www.idea-group.com

Hershey • London • Melbourne • Singapore • Beijing

A New Title from IGP!

ISBN 1-930708-09-2 (h/c); US$89.95; eISBN 1-591400-09-0 ;
308 pages • Copyright © 2002

Business to Business
Electronic Commerce:
Challenges & Solutions
Merrill Warkentin
Mississippi State University, USA

In the mid-1990s, the widespread adoption of the Web browser
led to a rapid commercialization of the Internet. Initial success
stories were reported from companies that learned how to
create an effective direct marketing channel, selling tangible
products to consumers directly over the World Wide Web. By
the end of the 1990s, the next revolution began—business-to-
business electronic commerce.

Business to Business Electronic Commerce: Challenges and
Solutions will provide researchers and practitioners with a
source of knowledge related to this emerging area of business.

Recommend IGP books to your library!

• Data Mining: A Heuristic Approach, Hussein Aly Abbass, Ruhul Amin Sarker & Charles S. Newton
ISBN: 1-930708-25-4 / eISBN: 1-59140-011-2 / 310 pages / US$89.95 / © 2002

• Managing Information Technology in Small Business: Challenges and Solutions, Stephen Burgess
ISBN: 1-930708-35-1 / eISBN: 1-59140-012-0 / 367 pages / US$74.95 / © 2002

• Managing Web Usage in the Workplace: A Social, Ethical and Legal Perspective, Murugan Anandarajan
& Claire A. Simmers
ISBN: 1-930708-18-1 / eISBN: 1-59140-003-1 / 386 pages / US$74.95 / © 2002

• Challenges of Information Technology Education in the 21st Century, Eli Cohen
ISBN: 1-930708-34-3 / eISBN: 1-59140-023-6 / 290 pages / US$74.95 / © 2002

• Social Responsibility in the Information Age: Issues and Controversies, Gurpreet Dhillon
ISBN: 1-930708-11-4 / eISBN: 1-59140-008-2 / 282 pages / US$74.95 / © 2002

• Database Integrity: Challenges and Solutions, Jorge H. Doorn and Laura Rivero
ISBN: 1-930708-38-6 / eISBN: 1-59140-024-4 / 300 pages / US$74.95 / © 2002

• Managing Virtual Web Organizations in the 21st Century: Issues and Challenges, Ulrich Franke
ISBN: 1-930708-24-6 / eISBN: 1-59140-016-3 / 368 pages / US$74.95 / © 2002

• Managing Business with Electronic Commerce: Issues and Trends, Aryya Gangopadhyay
ISBN: 1-930708-12-2 / eISBN: 1-59140-007-4 / 272 pages / US$74.95 / © 2002

• Electronic Government: Design, Applications and Management, Åke Grönlund
ISBN: 1-930708-19-X / eISBN: 1-59140-002-3 / 388 pages / US$74.95 / © 2002

• Knowledge Media in Health Care: Opportunities and Challenges, Rolf Grutter
ISBN: 1-930708-13-0 / eISBN: 1-59140-006-6 / 296 pages / US$74.95 / © 2002

• Internet Management Issues: A Global Perspective, John D. Haynes
ISBN: 1-930708-21-1 / eISBN: 1-59140-015-5 / 352 pages / US$74.95 / © 2002

• Enterprise Resource Planning: Global Opportunities and Challenges, Liaquat Hossain, Jon David
Patrick & M. A. Rashid
ISBN: 1-930708-36-X / eISBN: 1-59140-025-2 / 300 pages / US$89.95 / © 2002

• The Design and Management of Effective Distance Learning Programs, Richard Discenza, Caroline
Howard, & Karen Schenk
ISBN: 1-930708-20-3 / eISBN: 1-59140-001-5 / 312 pages / US$74.95 / © 2002

• Multirate Systems: Design and Applications, Gordana Jovanovic-Dolecek
ISBN: 1-930708-30-0 / eISBN: 1-59140-019-8 / 322 pages / US$74.95 / © 2002

• Managing IT/Community Partnerships in the 21st Century, Jonathan Lazar
ISBN: 1-930708-33-5 / eISBN: 1-59140-022-8 / 295 pages / US$89.95 / © 2002

• Multimedia Networking: Technology, Management and Applications, Syed Mahbubur Rahman
ISBN: 1-930708-14-9 / eISBN: 1-59140-005-8 / 498 pages / US$89.95 / © 2002

• Cases on Worldwide E-Commerce: Theory in Action, Mahesh Raisinghani
ISBN: 1-930708-27-0 / eISBN: 1-59140-013-9 / 276 pages / US$74.95 / © 2002

• Designing Instruction for Technology-Enhanced Learning, Patricia L. Rogers
ISBN: 1-930708-28-9 / eISBN: 1-59140-014-7 / 286 pages / US$74.95 / © 2002

• Heuristic and Optimization for Knowledge Discovery, Ruhul Amin Sarker, Hussein Aly Abbass &
Charles Newton
ISBN: 1-930708-26-2 / eISBN: 1-59140-017-1 / 296 pages / US$89.95 / © 2002

• Distributed Multimedia Databases: Techniques and Applications, Timothy K. Shih
ISBN: 1-930708-29-7 / eISBN: 1-59140-018-X / 384 pages / US$74.95 / © 2002

• Neural Networks in Business: Techniques and Applications, Kate Smith and Jatinder Gupta
ISBN: 1-930708-31-9 / eISBN: 1-59140-020-1 / 272 pages / US$89.95 / © 2002

• Managing the Human Side of Information Technology: Challenges and Solutions, Edward Szewczak
& Coral Snodgrass
ISBN: 1-930708-32-7 / eISBN: 1-59140-021-X / 364 pages / US$89.95 / © 2002

• Cases on Global IT Applications and Management: Successes and Pitfalls, Felix B. Tan
ISBN: 1-930708-16-5 / eISBN: 1-59140-000-7 / 300 pages / US$74.95 / © 2002

• Enterprise Networking: Multilayer Switching and Applications, Vasilis Theoharakis &
Dimitrios Serpanos
ISBN: 1-930708-17-3 / eISBN: 1-59140-004-X / 282 pages / US$89.95 / © 2002

• Measuring the Value of Information Technology, Han T. M. van der Zee
ISBN: 1-930708-08-4 / eISBN: 1-59140-010-4 / 224 pages / US$74.95 / © 2002

• Business to Business Electronic Commerce: Challenges and Solutions, Merrill Warkentin
ISBN: 1-930708-09-2 / eISBN: 1-59140-009-0 / 308 pages / US$89.95 / © 2002

Excellent additions to your institution’s library! Recommend these titles to your Librarian!
To receive a copy of the Idea Group Publishing catalog, please contact (toll free) 1/800-345-4332,

fax 1/717-533-8661,or visit the IGP Online Bookstore at: [http://www.idea-group.com]!
Note: All IGP books are also available as ebooks on netlibrary.com as well as other ebook

sources. Contact Ms. Carrie Stull at [cstull@idea-group.com] to receive a complete list of sources
where you can obtain ebook information or IGP titles.

NEW from Idea Group Publishing

✔ Advanced Topics in Database Research Series
✔ Advanced Topics in Global Information Management Series

✔ Advanced Topics in End User Computing Series
✔ Advanced Topics in Information Resources Management Series

✔ Cases on Information Technology Series

 Cases on Information Technology Series (ISSN 1537-9337)
 Vol Copyright ISBN Price Qty

4-1 2002 1-930708-40-8 US$89.00 ____
4-2 2002 1-930708-16-5 US$74.95 ____
4-3 2002 1-930708-27-0 US$74.95 ____
3-1 2001 1-878289-61-6 US$89.00 ____
2-1 2000 1-878289-83-7 US$89.00 ____
1-1 1999 1-878289-56-X US$89.00 ____

Advanced Topics in Database Research Series (ISSN 1537-9299)
 Vol Copyright ISBN Price Qty

1-1 2002 1-930708-41-6 US$74.95 ____

Advanced Topics in Information Resources Management Series (ISSN 1537-9329)
 Vol Copyright ISBN Price Qty

1-1 2002 1-930708-44-0 US$74.95 ____

Advanced Topics in Global Information Management Series (ISSN 1537-9302)
 Vol Copyright ISBN Price Qty

1-1 2002 1-930708-43-2 US$74.95 ____

Advanced Topics in End User Computing Series (ISSN 1537-9310)
 Vol Copyright ISBN Price Qty

1-1 2002 1-930708-42-4 US$74.95 ____

 in Information Technology Management
Series

Add these IGI Series to your personal or library IT collection today. Each series will
greatly enhance your collection in information technology. You will benefit from these
publications on advanced research in various areas of information technology
innovation, applications, utilization, management and organizational and societal
issues.

Expand your library collection in IT by ordering
these cutting-edge publications today!

RECOMMEND THIS IT SERIES TO YOUR LIBRARY.▼

1331 E. Chocolate Avenue, Hershey, PA 17033-1117 USA
Tel: (800) 345-4332 • Fax: (717)533-8661 • cust@idea-group.com

IDEA GROUP PUBLISHING
IGP Hershey • London • Melbourne • Singapore • Beijing

